

NUMBER SYSTEM AND CODES

 The term digital refers to a process that is achieved by using discrete unit.

 In number system there are different symbols and each symbol has an absolute value and also has place

value.

RADIX OR BASE:-

The radix or base of a number system is defined as the number of different digits which can occur in

each position in the number system.

RADIX POINT :-

The generalized form of a decimal point is known as radix point. In any positional number system the

radix point divides the integer and fractional part.

Nr = [Integer part . Fractional part]

↑

Radix point

NUMBER SYSTEM:-

In general a number in a system having base or radix ‘ r ’ can be written as

an an-1 an-2 …………… a0 . a -1 a -2 a - m

This will be interpreted as

Y = an x rn + an-1 x rn-1 + an-2 x rn-2 + ……… + a0 x r0 + a-1 x r -1 + a-2 x r -2 +… .. +a -m x r –m

where Y = value of the entire number

an = the value of the nth digit

r = radix

TYPES OF NUMBER SYSTEM:-

There are four types of number systems. They are

1. Decimal number system

2. Binary number system

3. Octal number system

4. Hexadecimal number system

DECIMAL NUMBER SYSTEM:-

 The decimal number system contain ten unique symbols 0,1,2,3,4,5,6,7,8 and 9.

 In decimal system 10 symbols are involved, so the base or radix is 10.

 It is a positional weighted system.

 The value attached to the symbol depends on its location with respect to the decimal point.

In general,

is given by

dn dn-1 dn-2 …………… d0 . d -1 d -2d - m

(dn x 10n) + (dn-1 x 10n-1) + (dn-2 x 10n-2) + … + (d0 x 100) + (d-1 x 10 -1) + (d-2 x 10 -2) +…+(d -m x 10 –m)

For example:-

9256.26 = 9 x 1000 + 2 x 100 + 5 x 10 + 6 x 1 + 2 x (1/10) + 6 x (1/100)

= 9 x 103 + 2 x 102 + 5 x 101 + 6 x 100 + 2 x 10-1 + 6 x 10-2

BINARY NUMBER SYSTEM:-

 The binary number system is a positional weighted system.

 The base or radix of this number system is 2.

 It has two independent symbols.

 The symbols used are 0 and 1.

 A binary digit is called a bit.

 The binary point separates the integer and fraction parts.

In general,

is given by

dn dn-1 dn-2 …………… d0 . d -1 d -2d – k

(dn x 2n) + (dn-1 x 2n-1) + (dn-2 x 2n-2) + ….+ (d0 x 20) + (d-1 x 2 -1) + (d-2 x 2 -2) +….+(d -k x 2 –k)

OCTAL NUMBER SYSTEM:-

 It is also a positional weighted system.

 Its base or radix is 8.

 It has 8 independent symbols 0,1,2,3,4,5,6 and 7.

 Its base 8 = 23 , every 3- bit group of binary can be represented by an octal digit.

HEXADECIMAL NUMBER SYSTEM:-

 The hexadecimal number system is a positional weighted system.

 The base or radix of this number system is 16.

 The symbols used are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F

 The base 16 = 24 , every 4 – bit group of binary can be represented by an hexadecimal digit.

CONVERSION FROM ONE NUMBER SYSTEM TO ANOTHER :-

1. BINARY NUMBER SYSTEM:-

(a) Binary to decimal conversion:-

In this method, each binary digit of the number is multiplied by its positional weight and the product terms

are added to obtain decimal number.

For example:

(i) Convert (10101)2 to decimal.

Solution :

(Positional weight) 24 23 22 21 20

Binary number 10101

= (1 x 24) + (0 x 23) + (1x 22) + (0 x 21) + (1 x 20)

= 16 + 0+ 4+ 0+ 1

= (21)10

(ii) Convert (111.101)2 to decimal.

Solution:

(111.101)2 = (1 x 22) + (1 x 21) + (1x 20) + (1 x 2 -1) + (0 x 2 -2) + (1 x 2 -3)

= 4+ 2+ 1 + 0.5 + 0 + 0.125

= (7.625)10

(b) Binary to Octal conversion:-

For conversion binary to octal the binary numbers are divided into groups of 3 bits each, starting at the

binary point and proceeding towards left and right.

Octal Binary Octal Binary

0 000 4 100

1 001 5 101

2 010 6 110

3 011 7 111

For example:

(i) Convert (101111010110.110110011)2 into octal.

Solution :

Group of 3 bits are 101 111 010 110 . 110 110 011

Convert each group into octal = 5 7 2 6 . 6 6 3

The result is (5726.663)8

(ii) Convert (10101111001.0111)2 into octal.

Solution :

Convert each group into octal = 2 5 7 1 . 3 4

The result is (2571.34)8

(c) Binary to Hexadecimal conversion:-

For conversion binary to hexadecimal number the binary numbers starting from the binary point, groups are

made of 4 bits each, on either side of the binary point.

Binary number 10 101 111 001 . 011 1

Group of 3 bits are = 010 101 111 001 . 011 100

Hexadecimal Binary Hexadecimal Binary

0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

For example:

(i) Convert (1011011011)2 into hexadecimal.

Solution:

(ii) Convert (01011111011.011111)2 into hexadecimal.

Solution:

Convert each group into octal = 2 F B . 7 C

The result is (2FB.7C)16

2. DECIMAL NUMBER SYSTEM:-

(a) Decimal to binary conversion:-

In the conversion the integer number are converted to the desired base using successive division by the base

or radix.

For example:
(i) Convert (52)10 into binary.

Solution:

Divide the given decimal number successively by 2 read the integer part remainder upwards to get

equivalent binary number. Multiply the fraction part by 2. Keep the integer in the product as it is and

multiply the new fraction in the product by 2. The process is continued and the integer are read in the

products from top to bottom.

2 I 52

2 l 26 ― 0

2 l 13 ― 0

2 l 6 ― 1

2 l 3 ― 0

2 l 1 ― 1

0 ― 1

Given Binary number 10 1101 1011

Group of 4 bits are 0010 1101 1011

Convert each group into hex

The result is (2DB)16

= 2 D B

Given Binary number 010 1111 1011 . 0111 11

Group of 3 bits are = 0010 1111 1011 . 0111 1100

Result of (52)10 is (110100)2

(ii) Convert (105.15)10 into binary.

Solution:

Result of (105.15)10 is (1101001.001001)2

(b) Decimal to octal conversion:-

To convert the given decimal integer number to octal, successively divide the given number by 8 till the

quotient is 0. To convert the given decimal fractions to octal successively multiply the decimal fraction and

the subsequent decimal fractions by 8 till the product is 0 or till the required accuracy is obtained.

For example:

(i) Convert (378.93)10 into octal.

Solution:

Result of (378.93)10 is (572.7341)8

(c) Decimal to hexadecimal conversion:-

The decimal to hexadecimal conversion is same as octal.

For example:
(i) Convert (2598.675)10 into hexadecimal.

Solution:

Remainder

 Decimal Hex Hex

16 I 2598 0.675 x 16 = 10.8 A

16 l 162 ― 6 6 0.800 x 16 = 12.8 C

16 l 10 ― 2 2 0.800 x 16 = 12.8 C
0 ― 10 A 0.800 x 16 = 12.8 C

Result of (2598.675)10 is (A26.ACCC)16

3. OCTAL NUMBER SYSTEM:-

(a) Octal to binary conversion:-

b. To convert a given a octal number to binary, replace each octal digit by its 3- bit binary equivalent.

Integer
part

 Fraction part

2 I 105 0.15 x 2 = 0.30

2 l 52 ― 1 0.30 x 2 = 0.60

2 l 26 ― 0 0.60 x 2 = 1.20

2 l 13 ― 0 0.20 x 2 = 0.40

2 l 6 ― 1 0.40 x 2 = 0.80

2 l 3 ― 0 0.80 x 2 = 1.60

2 l 1 ― 1

0 ― 1

8 I 378 0.93 x 8 = 7.44

8 l 47 ― 2 0.44 x 8 = 3.52

8 l 5 ― 7 0.52 x 8 = 4.16
0 ― 5 0.16 x 8 = 1.28

For example:

Convert (367.52)8 into binary.

Solution:

Given Octal number is

3

6 7 . 5 2

Convert each group octal

to binary

= 011 110 111 . 101 010

Result of (367.52)8 is (011110111.101010)2

(b) Octal to decimal conversion:-

For conversion octal to decimal number, multiply each digit in the octal number by the weight of its position

and add all the product terms

For example: -

Convert (4057.06) 8 to decimal

Solution:
(4057.06) 8 = 4 x 83 + 0 x 82 + 5 x 81 + 7 x 80 + 0 x 8 – 1 + 6 x 8- 2

= 2048 + 0 + 40 + 7 + 0 +0.0937
= (2095. 0937)10

Result is (2095.0937)10

(c) Octal to hexadecimal conversion:-

For conversion of octal to Hexadecimal, first convert the given octal number to binary and then binary

number to hexadecimal.

For example :-
Convert (756.603)8 to hexadecimal.

Solution :-
Given octal no. 7 5 6 . 6 0 3

Convert each octal digit to binary = 111 101 110 . 110 000 011
Group of 4bits are = 0001 1110 1110 . 1100 0001 1000
Convert 4 bits group to hex.

Result is (1EE.C18)16

= 1 E E . C 1 8

(4) HEXADECIMAL NUMBER SYSTEM :-

(a) Hexadecimal to binary conversion:-

For conversion of hexadecimal to binary, replace hexadecimal digit by its 4 bit binary group.

For example:

Convert (3A9E.B0D)16 into binary.

Solution:

Given Hexadecimal number is 3 A 9 E . B 0 D

Convert each hexadecimal = 0011 1010 1001 1110 . 1011 0000 1101 digit

to 4 bit binary

Result of (3A9E.B0D)8 is (0011101010011110.101100001101)2

(b) Hexadecimal to decimal conversion:-

For conversion of hexadecimal to decimal, multiply each digit in the hexadecimal number by its position

weight and add all those product terms.

For example: -
Convert (A0F9.0EB)16 to decimal

Solution:
(A0F9.0EB)16 = (10 x 163)+(0 x 162)+(15 x 161) +(9 x 160) +(0 x 16 – 1) +(14 x 16- 2) +(11 x 16-3)

= 40960 + 0 + 240 + 9 + 0 +0.0546 + 0.0026
= (41209.0572)10

Result is (41209.0572)10

(c) Hexadecimal to Octal conversion:-

For conversion of hexadecimal to octal, first convert the given hexadecimal number to binary and then

binary number to octal.

For example :-

Convert (B9F.AE)16 to octal.

Solution :-
Given hexadecimal no.is

B

9

F .

A E

Convert each hex. digit to binary = 1011 1001 1111 . 1010 1110
Group of 3 bits are = 101 110 011 111 . 101 011 100
Convert 3 bits group to octal. = 5 6 3 7 . 5 3 4

Result is (5637.534)8

BINARY ARITHEMATIC OPERATION :-

1. BINARY ADDITION:-

The binary addition rules are as follows

0 + 0 = 0 ; 0 + 1 = 1 ; 1 + 0 = 1 ; 1 + 1 = 10 , i.e 0 with a carry of

1 For example :-

Add (100101)2 and (1101111)2.
Solution :-

1 0 0 1 0 1

+ 1 1 0 1 1 1 1

1 0 0 1 0 1 0 0

Result is (10010100)2

2. BINARY SUBTRACTION:-

The binary subtraction rules are as follows

0 - 0 = 0 ; 1 - 1 = 0 ; 1 - 0 = 1 ; 0 - 1 = 1 , with a borrow of 1

For example :-

Substract (111.111)2 from (1010.01)2.

Solution :-

1 0 1 0 . 0 1 0

- 1 1 1 . 1 1 1

 0 0 1 0 .0 1 1

Result is (0010.011)2

3. BINARY MULTIPLICATION:-

The binary multiplication rules are as

follows 0 x 0 = 0 ; 1 x 1 = 1 ; 1 x 0 = 0 ; 0 x

1 = 0

For example :-

Multiply (1101)2 by

(110)2. Solution :-

1 1 0 1

x 1 1 0

 0 0 0 0

 1 1 0 1

+ 1 1 0 1

 1 0 0 1 1 1 0

Result is (1001110)2

4. BINARY DIVISION:-

The binary division is very simple and similar to decimal number system. The division by ‘0’ is

meaningless. So we have only 2 rules

0 ÷ 1 = 0

1 ÷ 1 = 1

For example :-

Divide (10110)2 by (110)2.

Solution :-

110) 101101 (111.1

- 110

1010

 110

1001

 110

110

 110

 000

Result is (111.1)2

1’s COMPLEMENT REPRESENTATION :-

The 1’s complement of a binary number is obtained by changing each 0 to 1 and each 1 to 0.

For example :-

Find (1100)2 1’s complement.

Solution :-

Given 1 1 0 0

1’s complement is 0 0 1 1

Result is (0011)2

2’s COMPLEMENT REPRESENTATION :-

The 2’s complement of a binary number is a binary number which is obtained by adding 1 to the 1’s

complement of a number i.e.

2’s complement = 1’s complement + 1

For example :-

Find (1010)2 2’s complement.

Solution :-

Given 1 0 1 0

1’s complement is 0 1 0 1

+ 1

2’s complement 01 1 0

Result is (0110)2

SIGNED NUMBER :-

In sign – magnitude form, additional bit called the sign bit is placed in front of the number. If the sign bit

is 0, the number is positive. If it is a 1, the number is negative.

For example:-

0 1 0 1 0 0 1 = +41

↑

Sign bit

1 1 0 1 0 0 1 = -41

↑

Sign bit

SUBSTRACTION USING COMPLEMENT METHOD :-

1’s COMPLEMENT:-

In 1’s complement subtraction, add the 1’s complement of subtrahend to the minuend. If there is a carry out,

then the carry is added to the LSB. This is called end around carry. If the MSB is 0, the result is positive. If the

MSB is 1, the result is negative and is in its 1‘s complement form. Then take its 1’s complement to get the

magnitude in binary.

For example:-

Subtract (10000)2 from (11010)2 using 1’s complement.

Solution:-

1 1 0 1 0 1 1 0 1 0 = 26

- 1 0 0 0 0 => + 0 1 1 1 1 (1’s complement) = - 16

 Carry → 1 0 1 0 0 1 + 10

 + 1

 0 1 0 1 0 = +10

Result is +10

2’s COMPLEMENT:-

In 2’s complement subtraction, add the 2’s complement of subtrahend to the minuend. If there is a carry out,

ignore it. If the MSB is 0, the result is positive. If the MSB is 1, the result is negative and is in its 2‘s

complement form. Then take its 2’s complement to get the magnitude in binary.

For example:-

Subtract (1010100)2 from (1010100)2 using 2’s complement.

Solution:-

 1 0 1 0 1 0 0 1 0 1 0 1 0 0 = 84

- 1 0 1 0 1 0 0 => + 0 1 0 1 1 0 0 (2’s complement) = - 84_

=

1 0 0 0 0 0 0 0 (Ignore the carry)
0 (result = 0)

 0

Hence MSB is 0. The answer is positive. So it is +0000000 = 0

DIGITAL CODES:-

In practice the digital electronics requires to handle data which may be numeric, alphabets and special

characters. This requires the conversion of the incoming data into binary format before it can be processed.

There is various possible ways of doing this and this process is called encoding. To achieve the reverse of it, we

use decoders.

WEIGHTED AND NON-WEIGHTED CODES:-

There are two types of binary codes

1) Weighted binary codes

2) Non- weighted binary codes

In weighted codes, for each position (or bit) ,there is specific weight attached.

For example, in binary number, each bit is assigned particular weight 2n where ‘n’ is the bit number for n =

0,1,2,3,4 the weights are 1,2,4,8,16 respectively.

Example :- BCD

Non-weighted codes are codes which are not assigned with any weight to each digit position, i.e., each digit

position within the number is not assigned fixed value.

Example:- Excess – 3 (XS -3) code and Gray codes

BINARY CODED DECIMAL (BCD):-

BCD is a weighted code. In weighted codes, each successive digit from right to left represents weights equal to

some specified value and to get the equivalent decimal number add the products of the weights by the

corresponding binary digit. 8421 is the most common because 8421 BCD is the most natural amongst the other

possible codes.

For example:-

(567)10 is encoded in various 4 bit codes.

Solution:-

Decimal → 5 6 7

8421 code → 0101 0110 0111

6311 code → 0111 1000 1001
5421 code → 1000 0100 1010

BCD ADDITION:-

Addition of BCD (8421) is performed by adding two digits of binary, starting from least significant digit. In

case if the result is an illegal code (greater than 9) or if there is a carry out of one then add 0110(6) and add the

resulting carry to the next most significant.

For example:-

Add 679.6 from 536.8 using BCD addition.

Solution:-

6 7 9 . 6 0110 0111 1001 . 0110 (679.6 in BCD)

+ 5 3 6 . 8 =>+ 0101 0011 0110 . 1000 (536.8 in BCD)

1 2 1 6 . 4 1011 1010 1111 . 1110 (All are illegal codes)

 + 0110 +0110 +0110 .+0110 (Add 0110 to each)

0001 0010 0001 0110 . 0100

1 2 1 6 . 4 (corrected sum = 1216.4)

Result is 1216.4

BCD SUBTRACTION:-

The BCD subtraction is performed by subtracting the digits of each 4 – bit group of the subtrahend from

corresponding 4 – bit group of the minuend in the binary starting from the LSD. If there is no borrow from the

next higher group[then no correction is required. If there is a borrow from the next group, then 610 (0110) is

subtracted from the difference term of this group.

For example:-

Subtract 147.8 from 206.7 using 8421 BCD code.

Solution:-

2 0 6 . 7 0010 0000 0110 . 0111 (206.7 in BCD)

- 1 4 7 . 8 =>- 0001 0100 0111 . 1000 (147.8 in BCD)

5 8 . 9 0000 1011 1110 . 1111 (Borrows are present)

 - 0110 -0110 .- 0110

0101 1000 . 1001

5 8 . 9 (corrected difference = 58.9)

Result is (58.9)10

EXCESS THREE(XS-3) CODE:-

The Excess-3 code, also called XS-3, is a non- weighted BCD code. This derives it name from the fact that each

binary code word is the corresponding 8421 code word plus 0011(3). It is a sequential code. It is a self

complementing code.

XS-3 ADDITION:-

In XS-3 addition, add the XS-3 numbers by adding the 4 bit groups in each column starting from the LSD. If

there is no carry out from the addition of any of the 4 bit groups, subtract 0011 from the sum term of those

groups. If there is a carry out, add 0011 to the sum term of those groups

For example:-

Add 37 and 28 using XS-3 code.

Solution:-

3 7 0110 1010 (37 in XS-3)

+ 2 8 => + 0101 1011 (28 in XS-3)

6 5 1011 11010 (Carry is generated)

 + 1 (Propagate carry)

 1100 0101 (Add 0110 to correct 0101 and

 - 0011 +0011 subtract 0011 to correct 1100)

 1001 1000 (Corrected sum in XS-3 = 6510)

XS-3 SUBTRACTION:-

To subtract in XS-3 number by subtracting each 4-bit group of the subtrahend from the corresponding 4-bit

group of the minuend starting from the LSD. If there is no borrow from the next 4-bit group. add 0011 to the

difference term of such groups. If there is a borrow, subtract 0011 from the difference term.

For example :-

. Subtract 175 from 267 using XS-3 code.

Solution :-`

267 0101 1010 1010 (267 in XS-3)

-175 => - 0100 1010 1000 (175 in XS-3)

092 0000 1111 0010 (Correct 0010 and 0000 by adding 0011 and

+0011 -0011 +0011 correct 1111 by subtracting 0011)

0011 1100 0101 (Corrected difference in XS-3 = 9210)

ASCII CODE:-

The American Standard Code for Information Interchange (ASCII) pronounced as ‘ASKEE’ is widely used

alphanumeric code. This is basically a 7 bit code. The number of different bit patterns that can be created with 7

bits is 27 = 128 , the ASCII can be used to encode both the uppercase and lowercase characters of the alphabet

(52 symbols) and some special symbols in addition to the 10 decimal digits. It is used extensively for printers

and terminals that interface with small computer systems. The table shown below shows the ASCII groups.

The ASCII code

LSBs MSBs

 000 001 010 011 100 101 110 111

0000 NUL DEL Space 0 @ P P

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 “ 2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYN & 6 F V f v

0111 BEL ETB ‘ 7 G W g w

1000 BS CAN (8 H X h x

1001 HT EM) 9 I Y i y

1010 LF SUB * : J Z j z

1011 VT ESC + ; K [k {

1100 FF FS , < L \ l |

1101 CR GS - = M] m }

1110 SO RS . > N ^ n ~

1111 SI US / ? O _ o DLE

EBCDIC CODE:-

The Extended Binary Coded Decimal Interchange Code (EBCDIC) pronounced as ‘eb – si- dik’ is an 8 bit

alphanumeric code. Since 28 = 256 bit patterns can be formed with 8 bits. It is used by most large computers to

communicate in alphanumeric data. The table shown below shows the EBCDIC code.

The EBCDIC code

LSD
(Hex)

MSD(Hex)

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL DLE DS SP & [] \ 0

1 SOH DC1 SOS / a j ~ A J 1

2 STX DC2 FS SYN b k s B K S 2

3 ETX DC3 c l t C L T 3

4 PF RES BYP PN d m u D M U 4

5 HT NL LF RS e n v E N V 5

6 LC BS EOB YC f o w F O W 6

7 DEL IL PRE EOT g p x G P X 7

8 CAN h q y H Q Y 8

9 EM i r z I R Z 9

A SMM CC SM Ø ! I :

B VT . $, #

C FF IFS DC4 < * % @

D CR IGS ENQ NAK () _ ‘

E SO IRS ACK + ; > =

F SI IUS BEL SUB I ‘ ? ‘

GRAY CODE:-

The gray code is a non-weighted code. It is not a BCD code. It is cyclic code because successive words in this

differ in one bit position only i.e it is a unit distance code.

Gray code is used in instrumentation and data acquisition systems where linear or angular displacement

is measured. They are also used in shaft encoders, I/O devices, A/D converters and other peripheral equipment.

BINARY- TO – GRAY CONVERSION:-

If an n-bit binary number is represented by Bn Bn-1 - - - - - B1 and its gray code equivalent by Gn Gn-1 --- G1,

where Bn and Gn are the MSBs , then gray code bits are obtained from the binary code as follows

Gn = Bn

Gn-1 = Bn Bn-1
.
.
.

.

G1 = B2 B1

Where the symbol stands for Exclusive OR (X-OR)

For example :-

Convert the binary 1001 to the Gray code.

Solution :-`

Binary → 1 0 0 1

Gray → 1 1 0 1

The gray code is 1101

GRAY- TO - BINARY CONVERSION:-

If an n-bit gray number is represented by Gn Gn-1 ------- G1 and its binary equivalent by Bn Bn-1 ------ B1,

then binary bits are obtained from Gray bits as follows

: Bn = Gn

Bn-1 = Bn Gn-1
.
.
.

.

B1 = B2 G1

For example :-

Convert the Gray code 1101 to the binary.

Solution :-

Gray → 1 1 0 1

Binary→ 1 0 0 1

The binary code is 1001

LOGIC GATES:-

LOGIC GATES

 Logic gates are the fundamental building blocks of digital systems.

 There are 3 basic types of gates AND, OR and NOT.

 Logic gates are electronic circuits because they are made up of a number of electronic devices and

components.

 Inputs and outputs of logic gates can occur only in 2 levels. These two levels are termed HIGH and

LOW, or TRUE and FALSE, or ON and OFF or simply 1 and 0.

 The table which lists all the possible combinations of input variables and the corresponding outputs is

called a truth table.

LEVEL LOGIC:-

A logic in which the voltage levels represents logic 1 and logic 0. Level logic may be positive or negative

logic. Positive Logic:-

A positive logic system is the one in which the higher of the two voltage levels represents the logic 1 and the

lower of the two voltages level represents the logic 0.

Negative Logic:-

A negative logic system is the one in which the lower of the two voltage levels represents the logic 1 and the

higher of the two voltages level represents the logic 0.

DIFFERENT TYPES OF LOGIC GATES:- NOT

GATE (INVERTER):-

 A NOT gate, also called and inverter, has only one input and one output.

 It is a device whose output is always the complement of its input.

 The output of a NOT gate is the logic 1 state when its input is in logic 0 state and the logic 0 state when

its inputs is in logic 1 state.

IC No. :- 7404

Logic Symbol

Timing Diagram

1 0 0 1

Truth table

INPUT

A

OUTPUT

A

0 1

1 0

A

A

0 1 1 0

AND GATE:-

 An AND gate has two or more inputs but only one output.

 The output is logic 1 state only when each one of its inputs is at logic 1 state.

 The output is logic 0 state even if one of its inputs is at logic 0 state.

IC No.:- 7408

Logic Symbol Truth Table

Timing Diagram

0 0 1 1

A

0 1 0 1

B

0 0 0 1

Q

OR GATE:-

 An OR gate may have two or more inputs but only one output.

 The output is logic 1 state, even if one of its input is in logic 1 state.

 The output is logic 0 state, only when each one of its inputs is in logic state.

IC No.:- 7432

Logic Symbol Truth Table

Timing Diagram

0 0 1 1

A

0 1 0 1

B

 OUTPUT

A B Q=A . B

0 0 0

0 1 0

1 0 0

1 1 1

INPUT OUTPUT

A B Q=A + B

0 0 0

0 1 1

1 0 1

1 1 1

0 1 1 1

Q

NAND GATE:-

 NAND gate is a combination of an AND gate and a NOT gate.

 The output is logic 0 when each of the input is logic 1 and for any other combination of inputs, the

output is logic 1.

IC No.:- 7400 two input NAND gate

7410 three input NAND

gate 7420 four input NAND

gate 7430 eight input NAND

gate

Logic Symbol Truth Table

Timing Diagram

0 0 1 1

A

0 1 0 1

B

1 1 1 0

Q

NOR GATE:-

 NOR gate is a combination of an OR gate and a NOT gate.

 The output is logic 1, only when each one of its input is logic 0 and for any other combination of inputs,

the output is a logic 0 level.

IC No.:- 7402 two input NOR gate

7427 three input NOR gate

7425 four input NOR gate

Logic Symbol Truth Table

INPUT OUTPUT

A B Q= A . B

0 0 1

0 1 1

1 0 1

1 1 0

INPUT OUTPUT

A B Q= A + B

0 0 1

0 1 0

1 0 0

1 1 0

Timing Diagram

0 0 1 1

A

0 1 0 1

B

1 0 0 0

Q

EXCLUSIVE – OR (X-OR) GATE:-

 An X-OR gate is a two input, one output logic circuit.

 The output is logic 1 when one and only one of its two inputs is logic 1. When both the inputs is logic 0

or when both the inputs is logic 1, the output is logic 0.

IC No.:- 7486

Logic Symbol

INPUTS are A and B

OUTPUT is Q = A B

= A B + A B

Timing Diagram

0 0 1 1

Truth Table

INPUT OUTPUT

A B Q = A B

0 0 0

0 1 1

1 0 1

1 1 0

A

0 1 0 1

B

0 1 1 0

Q

EXCLUSIVE – NOR (X-NOR) GATE:-

 An X-NOR gate is the combination of an X-OR gate and a NOT gate.

 An X-NOR gate is a two input, one output logic circuit.

 The output is logic 1 only when both the inputs are logic 0 or when both the inputs is 1.

 The output is logic 0 when one of the inputs is logic 0 and other is 1.

IC No.:- 74266

Logic Symbol

OUT =A B + A B

= A XNOR B

Timing Diagram

0 0 1 1

A

B

OUT

0 1 0 1

1 0 0 1

UNIVERSAL GATES:-

There are 3 basic gates AND, OR and NOT, there are two universal gates NAND and NOR, each of which can

realize logic circuits single handedly. The NAND and NOR gates are called universal building blocks. Both

NAND and NOR gates can perform all logic functions i.e. AND, OR, NOT, EXOR and EXNOR.

NAND GATE:-

a) Inverter from NAND gate

Input = A

Output Q = A

b) AND gate from NAND gate

Input s are A and B

Output Q = A.B

INPUT OUTPUT

A B OUT =A XNOR B

0 0 1

0 1 0

1 0 0

1 1 1

c) OR gate from NAND gate

Inputs are A and B

Output Q = A+B

d) NOR gate from NAND gate

Inputs are A and B

Output Q = A+B

e) EX-OR gate from NAND gate

Inputs are A and B

Output Q = A B +

AB

f) EX-NOR gate From NAND gate

Inputs are A and B
Output Q = A B + A B

NOR GATE:-

a) Inverter from NOR

gate Input = A

Output Q = A

b) AND gate from NOR

gate Input s are A and B

Output Q = A.B

c) OR gate from NOR gate

Inputs are A and B

Output Q = A+B

d) NAND gate from NOR gate

Inputs are A and B

Output Q = A.B

e) EX-OR gate from NOR gate

Inputs are A and B

Output Q = A B +

AB

f) EX-NOR gate From NOR gate

Inputs are A and B
Output Q = A B + A B

THRESHOLD LOGIC:-

INTRODUCTION:-

 The threshold element, also called the threshold gate (T-gate) is a much more powerful device than any

of the conventional logic gates such as NAND, NOR and others.

 Complex, large Boolean functions can be realized using much fewer threshold gates.

 Frequently a single threshold gate can realize a very complex function which otherwise might require a

large number of conventional gates.

 T-gate offers incomparably economical realization; it has not found extensive use with the digital system

designers mainly because of the following limitations.

1. It is very sensitive to parameter variations.

2. It is difficult to fabricate it in IC form.

3. The speed of switching of threshold elements in much lower than that of conventional gates.

THE THRESHOLD ELEMENTS:-

 A threshold element or gate has ‘n’ binary inputs x1, x2, ….., xn; and a single binary output F. But in

addition to those, it has two more parameters.

 Its parameters are a threshold T and weights w1, w2, ….,wn. The weights w1, w2, …, wn are associated

with the input variables x1, x2, …, xn.

 The value of the threshold (T) and weights may be real, positive or negative number.

 The symbol of the threshold element is shown in fig.(a).

 It is represented by a circle

represents T.

 It is defined as

partitioned into two parts, one part represents the weights and other

n

F(x1, x2, ……, xn) = 1 if and only if ∑ wi xi ≥T

i=1
otherwise
F(x1, x2, ……, xn) = 0

n
 The sum and product operation are normal arithmetic operations and the sum∑ wi xi ≥T

i=1
is called the weighted sum of the element or gate.

Example:-

Obtain the minimal Boolean expression from the threshold gate shown in figure.

Solution:-

The threshold gate with three inputs x1, x2, x3 with weights -2(w1) , 4(w2) and 2(w3) respectively. The value of

threshold is 2(T). The table shown is the weighted sums and outputs for all input combinations. For this

threshold gate, the weighted sum is

w = w1x1 + w2x2 + w3x3

= (-2)x1 + (4)x2 + (2)x3

= -2x1 + 4x2 + 2x3

The output F is logic 1 for w≥2 and it is logic 0 for w<2

Input Variables Weighted Sum Output

x1 x2 x3 w = -2x1 + 4x2 + 2x3 F
0 0 0 0 0
0 0 1 2 1
0 1 0 4 1
0 1 1 6 1
1 0 0 -2 0
1 0 1 0 0
1 1 0 2 1
1 1 1 4 1

From the input – output relation is given in the table, the Boolean expression for the output is

F=∑ m (1, 2, 3, 6, 7)

The K-map for F is

BOOLEAN ALGEBRA

INTRODUCTION:-

 Switching circuits are also called logic circuits, gates circuits and digital circuits.

 Switching algebra is also called Boolean algebra.

 Boolean algebra is a system of mathematical logic. It is an algebraic system consisting of the set of

elements (0,1), two binary operators called OR and AND and unary operator called NOT.

 It is the basic mathematical tool in the analysis and synthesis of switching circuits.

 It is a way to express logic functions algebraically.

 Any complex logic can be expressed by a Boolean function.

 The Boolean algebra is governed by certain well developed rules and laws.

AXIOMS AND LAWS OF BOOLEAN ALGEBRA:-

Axioms or postulates of Boolean algebra are set of logical expressions that are accepted without proof and upon

which we can build a set of useful theorems. Actually, axioms are nothing more than the definitions of the three

basic logic operations AND, OR and INVERTER. Each axiom can be interpreted as the outcome of an

operation performed by a logic gate.

AND operation OR operation NOT operation

Axiom 1: 0 . 0 = 0 Axiom 5: 0 + 0 =

0

Axiom 9: 1 = 0

Axiom 2: 0 . 1 = 0

Axiom 3: 1 . 0 = 0

Axiom 2: 1 . 1 = 1

Axiom 6: 0 + 1 = 1

Axiom 7: 1 + 0 = 1

Axiom 8: 1 + 1 = 1

Axiom 10:0 = 1

1. Complementation Laws:-

The term complement simply means to invert, i.e. to changes 0s to 1s and 1s to 0s. The five laws of

complementation are as follows:

Law 1: 0 = 1
Law 2: 1 = 0

Law 3: if A = 0, then A =

1 Law 4: if A = 1,thenA =

0

Law 5: A = 0 (double complementation law)

2. OR Laws:-

The four OR laws are as follows

Law 1: A + 0 = 0(Null law)

Law 2: A + 1 = 1(Identity law)

Law 3: A + A = A

Law 4: A +A = 1

3. AND Laws:-

The four AND laws are as follows

Law 1: A . 0 = 0(Null law)

Law 2: A . 1 = 1(Identity

law) Law 3: A . A = A

Law 4: A .A = 0

4. Commutative Laws:-

Commutative laws allow change in position of AND or OR variables. There are two commutative laws.

Law 1: A + B = B + A

Proof

=

Law 2: A . B = B . A

Proof

=

This law can be extended to any number of variables. For example

A.B. C = B. C. A = C. A. B = B. A. C

5. Associative Laws:-

The associative laws allow grouping of variables. There are 2 associative laws.

Law 1: (A + B) + C = A + (B + C)

Proof

=

A B A + B

0 0 0

0 1 1

1 0 1

1 1 1

B A B+ A

0 0 0

0 1 1

1 0 1

1 1 1

A B A . B

0 0 0

0 1 0

1 0 0

1 1 1

B A B. A

0 0 0

0 1 0

1 0 0

1 1 1

A B C B+C A+(B+C)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 0 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

A B C A+B (A+B)+C

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Law 2: (A .B) C = A (B .C)

Proof

=

This law can be extended to any number of variables. For example

A(BCD) = (ABC)D = (AB) (CD)

6. Distributive Laws:-

The distributive laws allow factoring or multiplying out of expressions. There are two distributive laws.

Law 1: A (B + C) = AB + AC

Proof

=

Law 2: A + BC = (A+B)

(A+C) Proof RHS = (A+B) (A+C)

= AA + AC + BA + BC

= A + AC + AB + BC

= A (1+ C + B) + BC

= A. 1 + BC (1 +C + B = 1 + B = 1)

= A + BC

= LHS

7. Redundant Literal Rule

(RLR):- Law 1: A + AB =

A + B

A B C B.C A(B.C)

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 0

1 0 0 0 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

A B C AB (AB)C

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 0 0

1 0 0 0 0

1 0 1 0 0

1 1 0 1 0

1 1 1 1 1

A B C AB AC A+(B+C)

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 1 1 0 0 0

1 0 0 0 0 0

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 1 1 1

A B C B+C A(B+C)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Proof

Proof

A + AB = (A + A) (A + B)

= 1. (A + B)

= A +B

Law 2: A(A + B) =

AB A(A + B) = AA +

AB

= 0 + AB

= AB

8. Idempotence Laws:-

Idempotence means same value.

Law 1: A. A = A

Proof

If A = 0, then A. A = 0. 0 =0 =

A If A = 1, then A. A = 1. 1 = 1

= A

This law states that AND of a variable with itself is equal to that variable only.

Law 2: A + A = A

Proof

If A = 0, then A + A = 0 + 0 = 0 =

A If A = 1, then A + A = 1 + 1 = 1

= A

This law states that OR of a variable with itself is equal to that variable only.

9. Absorption Laws:-

There are two laws:

Law 1: A + A ∙ B = A

Proof

Proof

A + A ∙ B = A (1 + B) = A ∙ 1 = A

Law 2: A (A + B) = A

A (A + B) = A ∙ A + A ∙ B = A + AB = A(1 + B) = A ∙ 1 = A

A B A+B A(A+B)

0 0 0 0

0 1 1 0

A B AB A+AB

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1

1 0 1 1

1 1 1 1

10. Consensus Theorem (Included Factor Theorem):-

Theorem 1:

AB +AC + BC = AB +AC

Proof

Theorem

2:

LHS = AB + AC + BC
= AB + AC + BC (A+A)

= AB + AC + BCA + BCA
= AB (1 + C) + AC (1+ B)
=AB (1) +AC (1)

= AB + AC

= RHS

Proof

(A + B)(A + C)(B + C) =(A +B)(A + C)

LHS = (A + B) (A + C) (B + C)
= (AA + AC + BA + BC) (B + C)
= (AC + BC +AB) (B + C)
= ABC + BC + AB + AC + BC+ABC

= AC + BC +AB

RHS= (A + B) (A+C)

= AA + AC + BC +AB
= AC + BC +AB

= LHS

11. Transposition Theorem:-

Theorem:

AB + AC = (A + C)(A + B)

Proof
RHS= (A + C) (A + B)

= AA + CA + AB + CB
= 0 +AC + AB + BC
= AC + AB + BC (A+A)
= AB + ABC + AC +ABC
= AB + AC

= LHS

12. De Morgan’s Theorem:-

De Morgan’s theorem represents two laws in Boolean algebra.

Law 1: A + B =A∙ B

Proof

A B A B A B

0 0 1 1 1

0 1 1 0 0

A B A + B A + B

0 0 0 1

0 1 1 0

=

This law states that the complement of a sum of variables is equal to the product of their individual

complements.

Law 2: A∙ B = A + B

Proof

=

This law states that the complement of a product of variables is equal to the sum of their individual

complements.

DUALITY:-

The implication of the duality concept is that once a theorem or statement is proved, the dual also thus stand

proved. This is called the principle of duality.
[f (A, B, C,…..,0, 1, +, ∙)]d = f(A, B, C, …., 1, 0, ∙, +)

Relations between complement and dual
fc (A, B, C, …..) = f (A, B, C, …..) = fd (A, B, C,…)

fd (A, B, C, …..) = f (A, B, C,…) = fc (A, B, C, …..)

The first relation states that the complement of a function f(A, B, C, …) can be obtained by complementing all

the variables in the dual function fd (A, B, C, …..).

The second relation states that the dual can be obtained by complementing all the literals in f

(A, B, C, ….).

DUALS:-

Given expression Dual

1. 0 = 1 1 = 0

2. 0 ∙1 = 0 1 + 0 = 1

3. 0 ∙0 = 0 1 + 1 = 1

4. 1 ∙1 = 1 0 + 0 = 0

5. A ∙ 0 = 0 A + 1 = 1

6. A ∙ 1 = A A + 0 = A

7. A ∙ A = A A + A = A
8. A ∙ A = 0 A + A = 1

9. A ∙ B = B ∙ A A + B = B+ A

10. A ∙ (B ∙ C)=(A ∙ B) ∙ C A + (B + C)=(A + B) + C

11. A ∙ (B + C) = AB + AC A + BC = (A + B) (A + C)

12. A(A + B) = A A + AB = A

13. A ∙ (A ∙ B) = A ∙ B A + A + B = A + B

A B A . B A . B

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

A B A B A + B

0 0 1 1 1

0 1 1 0 1

1 0 0 1 1

1 1 0 0 0

14. AB = A + B A + B = A B
15. (A + B) (A+ C) (B + C) = (A+ B)(A + C) AB + AC + BC = AB + AC
16. A + BC = (A + B)(A + C) A(B+ C) = A B +A C
17. (A+C)(A+B) = AB+AC AC+AB=(A+B) (A+C)

18. (A+B)(C+D) = AC + AD + BC + BD (AB+CD) = (A+C)(A+D)(B+C)(B+D)

19. A + B = AB + AB + AB AB =(A+B) (A+B) (A+B)

20. AB + A + AB = 0 A + B ∙ A ∙ (A + B) = 1

SUM - OF - PRODUCTS FORM:-

 This is also called disjunctive Canonical Form (DCF) or Expanded Sum of Products Form or Canonical

Sum of Products Form.

 In this form, the function is the sum of a number of products terms where each product term contains all

variables of the function either in complemented or uncomplemented form.

 This can also be derived from the truth table by finding the sum of all the terms that corresponds to those

combinations for which ‘f ’ assumes the value 1.

For example
f(A, B, C) = AB + BC

= AB (C + C) + BC (A + A)
= A BC + ABC + ABC + ABC

 The product term which contains all the variables of the functions either in complemented or

uncomplemented form is called a minterm.

 The minterm is denoted as mo, m1, m2 … .

 An ‘n’ variable function can have 2n minterms.

 Another way of representing the function in canonical SOP form is the showing the sum of minterms for

which the function equals to 1.

For example

f (A, B, C) = m1 + m2+ m3 + m5

or

f (A, B, C) =∑ m (1, 2, 3, 5)

where ∑m represents the sum of all the minterms whose decimal codes are given the parenthesis.

PRODUCT- OF - SUMS FORM:-

 This form is also called as Conjunctive Canonical Form (CCF) or Expanded Product - of – Sums Form

or Canonical Product Of Sums Form.

 This is by considering the combinations for which f = 0
 Each term is a sum of all the variables.
 The function f (A, B, C) = (A + B + C∙C) + (A + B + C∙C)

= (A + B + C) (A + B + C) (A + B + C) (A + B + C)

 The sum term which contains each of the ‘n’ variables in either complemented or uncomplemented form

is called a maxterm.

 Maxterm is represented as M0, M1, M2, …….

Thus CCF of ‘f’ may be written as

f(A, B, C)= M0 ∙ M4 ∙ M6∙

M7

or

f(A, B, C) = (0, 4, 6, 7)

Where represented the product of all maxterms.

CONVERSION BETWEEN CANONICAL FORM:-

The complement of a function expressed as the sum of minterms equals the sum of minterms missing from the

original function.

Example:-
f(A, B, C) = ∑m(0,2,4,6,7)

This has a complement that can be expressed as

f (A, B, C) =∑ m(1, 3, 5) = m1 + m3 + m5
If we complement f by De- Morgan’s theorem we obtain ‘f’ in a

form. f =(m1+ m3 + m5) = m1. m3. m5

= M1 M3 M5 =∏ M(1, 3 ,5)
Example:-

Expand A (A + B) (A + B + C) to maxterms and minterms.
Solution:-

In POS form
A(A + B) (A + B +

C) A = A + B B + CC

= (A + B) (A +B) + C∙C
= (A + B + CC) (A + B + C C)

= (A + B + C) (A + B +C) (A + B + C) (A + B +

C) A + B = A + B + C∙C

= (A + B + C) (A + B + C)

Therefore

A(A + B)(A + B + C)
= (A + B + C) (A + B +C) (A + B + C) (A +B +C) (A + B + C) (A + B + C)

= (000) (001) (010) (011) (100) (101)

= M0 ∙ M1 ∙ M2 ∙ M3 ∙ M4 ∙ M5

=∏ M(0, 1, 2, 3, 4,5)

The maxterms M6 and M7 are missing in the POS form.

So, the SOP form will contain the minterms 6 and 7

KARNAUGH MAP OR K- MAP:-

 The K- map is a chart or a graph, composed of an arrangement of adjacent cells, each representing a

particular combination of variables in sum or product form.

 The K- map is systematic method of simplifying the Boolean expression.

TWO VARIABLE K- MAP:-

A two variable expression can have 22 = 4 possible combinations of the input variables A and B.

Mapping of SOP Expression:-

 The 2 variable K-map has 22 = 4 squares. These squares are called cells.
 A ‘1’ is placed in any square indicates that corresponding minterm is included in the output expression,

and a 0 or no entry in any square indicates that the corresponding minterm does not appear in the

expression for output.
B

0 1

0

A

1

Example:-
Map expression f= AB + AB

Solution:-

The expression minterms is

F = m1 + m2 = m(1, 2)

B

0 1

0

A

A B A B

A B A B

0
0

1
1

 2 3

1 0

1

Minimization of SOP Expression:-

To minimize a Boolean expression given in the SOP form by using K- map, the adjacent squares having 1s,

that is minterms adjacent to each other are combined to form larger squares to eliminate some variables.

The possible minterm grouping in a two variable K- map are shown below

 Two minterms, which are adjacent to each other, can be combined to form a bigger square called 2 –

square or a pair. This eliminates one variable that is not common to both the minterms.

 Two 2-squares adjacent to each other can be combined to form a 4- square. A 4- square eliminates 2

variables. A 4-square is called a quad.

 Consider only those variables which remain constant throughout the square, and ignore the variables

which are varying. The non-complemented variable is the variable remaining constant as 1.The

complemented variable is the variable remaining constant as a 0 and the variables are written as a

product term.

Example:-

Reduce the expression f= AB + A B + AB using mapping.

Solution:-

Expressed in terms of minterms, the given expression is

f = m0 + m1 + m3 = ∑m (0, 1, 3)

F = A + B

Mapping of POS Expression:-

Each sum term in the standard POS expression is called a Maxterm. A function in two variables (A,B) has 4

possible maxterms, A + B, A + B, A + B and A + B . They are represented as M0, M1, M2 and M3 respectively.

The maxterm of a two variable K-

map Example:-
Plot the expression f= (A + B)(A + B)(A +

B) Solution:-

Expression interms of maxterms is f = πM (0, 2, 3)

Minimization of POS Expressions:-

In POS form the adjacent 0s are combined into large square as possible. If the squares having complemented

variable then the value remain constant as a 1 and the non-complemented variable if its value remains constant

as a 0 along the entire square and then their sum term is written.

The possible maxterms grouping in a two variable K-map are shown below

Example:-

Reduce the expression f = (A + B)(A + B)(A +B) using mapping

Solution:-

The given expression in terms of maxterms is f = πM (0, 1, 3)

THREE VARIABLE K- MAP:-

A function in three variables (A, B,

C) can be expressed in SOP and POS form having eight possible

combination. A three variable K- map have 8 squares or cells and each square

minterm or maxterm is shown in the figure below.

on the map represents a

Example:-

Map the expression f = ABC+ABC + ABC + ABC

+ABC Solution:-

So in the SOP form the expression is f = ∑ m (1, 5, 2, 6, 7)

Example:-
Map the expression f = (A + B + C) (A + B+C) (A + B + C) (A + B + C) (A + B +

C) Solution:-

So in the POS form the expression is f = π M (0, 5, 7, 3, 6)

Minimization of SOP and POS Expressions:-

For reducing the Boolean expressions in SOP (POS) form the following steps are given below

 Draw the K-map and place

expression.

1s (0s) corresponding to the minterms (maxterms) of the SOP (POS)

 In the map 1s (0s) which are not adjacent to any other 1(0) are the isolated minterms (maxterms). They

are to be read as they are because they cannot be combined even into a 2-square.

 For those 1s (0s) which are adjacent to only one other 1(0) make them pairs (2 squares).

 For quads (4- squares) and octet (8 squares) of adjacent 1s (0s) even if they contain some 1s (0s) which

have already been combined. They must geometrically form a square or a rectangle.

 For any 1s (0s) that have not been combined yet then combine them into bigger squares if possible.

 Form the minimal expression by summing (multiplying) the product (sum) terms of all the groups.

Some of the possible combinations of minterms in SOP form

These possible combinations are also for POS but 1s are replaced by 0s.

FOUR VARIABLE K-MAP:-

A four variable (A, B, C, D) expression can have 24 = 16 possible combinations of input variables. A four

variable K-map has 24 = 16 squares or cells and each square on the map represents either a minterm or a

maxterm as shown in the figure below. The binary number designations of the rows and columns are in the

gray code. The binary numbers along the top of the map indicate the conditions of C and D along any

column and binary numbers along left side indicate the conditions of A and B along any row. The numbers

in the top right corners of the squares indicate the minterm or maxterm desginations.

SOP FORM

Minimization of SOP and POS Expressions:-

For reducing the Boolean expressions in SOP (POS) form the following steps are given below

 Draw the K-map and place 1s (0s) corresponding to the minterms (maxterms) of the SOP (POS)

expression.

 In the map 1s (0s) which are not adjacent to any other 1(0) are the isolated minterms (maxterms). They

are to be read as they are because they cannot be combined even into a 2-square.

 For those 1s (0s) which are adjacent to only one other 1(0) make them pairs (2 squares).

 For quads (4- squares) and octet (8 squares) of adjacent 1s (0s) even if they contain some 1s (0s) which

have already been combined. They must geometrically form a square or a rectangle.

 For any 1s (0s) that have not been combined yet then combine them into bigger squares if possible.

 Form the minimal expression by summing (multiplying) the product (sum) terms of all the

groups. Example:-

Reduce using mapping the expression f = ∑ m (0, 1, 2, 3, 5, 7, 8, 9, 10, 12, 13)

Solution:-

The given expression in POS form is f = π M (4, 6, 11, 14, 15) and in SOP form f = ∑ m (0, 1, 2, 3, 5, 7, 8, 9,

10, 12, 13)

POS FORM

The minimal SOP expression is fmin= BD + AC + AD

The minimal POS expression is fmin =(A +B + D) (A + C + D) (A + B + C)

DON’T CARE COMBINATIONS:-

The combinations for which the values of the expression are not specified are called don’t care combinations or

optional combinations and such expression stand incompletely specified. The output is a don’t care for these

invalid combinations. The don’t care terms are denoted by d or X. During the process of designing using SOP

maps, each don’t care is treated as 1 to reduce the map otherwise it is treated as 0 and left alone. During the

process of designing using POS maps, each don’t care is treated as 0 to reduce the map otherwise it is treated as

1 and left alone.

A standard SOP expression with don’t cares can be converted into standard POS form by keeping the

don’t cares as they are, and the missing minterms of the SOP form are written as the maxterms of the POS form.

Similarly, to convert a standard POS expression with don’t cares can be converted into standard SOP form by

keeping the don’t cares as they are, and the missing maxterms of the POS form are written as the minterms of

the SOP form.

Example:-

Reduce the expression f = ∑ m(1, 5, 6, 12, 13, 14) + d(2, 4) using K- map.

Solution:-

The given expression in SOP form is f = ∑ m (1, 5, 6, 12, 13, 14) + d(2, 4)

The given expression in POS form is f = π M (0, 3, 7, 8, 9, 10, 11,15) + d(2, 4)

The minimal of SOP expression is fmin = BC + BD +ACD

The minimal of POS expression is fmin = (B + D)(A + B) (C + D)

SEQUENTIAL LOGIC CIRCUIT

SEQUENTIAL CIRCUIT:-

 It is a circuit whose output depends upon the present input, previous output and the sequence in which

the inputs are applied.

HOW THE SEQUENTIAL CIRCUIT IS DIFFERENT FROM COMBINATIONAL CIRCUIT? :-

 In combinational circuit output depends upon present input at any instant of time and do not use

memory. Hence previous input does not have any effect on the circuit. But sequential circuit has memory

and depends upon present input and previous output.

 Sequential circuits are slower than combinational circuits and these sequential circuits are harder to

design.

Input Output

Clock

[Block diagram of Sequential Logic Circuit]

 The data stored by the memory element at any given instant of time is called the present state of

sequential circuit.

TYPES:-

Sequential logic circuits (SLC) are classified as

(i) Synchronous SLC

(ii) Asynchronous SLC

 The SLC that are controlled by clock are called synchronous SLC and those which are not controlled by

a clock are asynchronous SLC.

 Clock:- A recurring pulse is called a clock.

FLIP-FLOP AND LATCH:-

 A flip-flop or latch is a circuit that has two stable states and can be used to store information.
 A flip-flop is a binary storage device capable of storing one bit of information. In a stable state, the

output of a flip-flop is either 0 or 1.

 Latch is a non-clocked flip-flop and it is the building block for the flip-flop.

 A storage element in digital circuit can maintain a binary state indefinitely until directed by an input

signal to switch state.

 Storage element that operate with signal level are called latches and those operate with clock transition

are called as flip-flops.

 The circuit can be made to change state by signals applied to one or more control inputs and will have

one or two outputs.

 A flip-flop is called so because its output either flips or flops meaning to switch back and forth.

 A flip-flop is also called a bi-stable multi-vibrator as it has two stable states. The input signals which

command the flip-flop to change state are called excitations.

 Flip-flops are storage devices and can store 1 or 0.

 Flip-flops using the clock signal are called clocked flip-flops. Control signals are effective only if they

are applied in synchronization with the clock signal.

 Clock-signals may be positive-edge triggered or negative-edge triggered.

 Positive-edge triggered flip-flops are those in which state transitions take place only at positive- going

edge of the clock pulse.

 Negative-edge triggered flip-flops are those in which state transition take place only at negative- going

edge of the clock pulse.

 Some common type of flip-flops include

a) SR (set-reset) F-F

b) D (data or delay) F-F

c) T (toggle) F-F and

d) JK F-F

SR latch:-

 The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates.

 It has two outputs labeled Q and Q’. Two inputs are there labeled S for set and R foe reset.

 The latch has two useful states. When Q=0 and Q’=1 the condition is called reset state and when Q=1

and Q’=0 the condition is called set state.

 Normally Q and Q’ are complement of each other.

 The figure represents a SR latch with two cross-coupled NOR gates. The circuit has NOR gates and as

we know if any one of the input for a NOR gate is HIGH then its output will be LOW and if both the

inputs are LOW then only the output will be HIGH.

 Under normal conditions, both inputs of the latch remain at 0 unless the state has to be changed. The

application of a momentary 1 to the S input causes the latch to go to the set state. The S input must go

back to 0 before any other changes take place, in order to avoid the occurrence of an undefined next state

that results from the forbidden input condition.

 The first condition (S = 1, R = 0) is the action that must be taken by input S to bring the circuit to the set

state. Removing the active input from S leaves the circuit in the same state. After both inputs return to 0,

it is then possible to shift to the reset state by momentary applying a 1 to the R input. The 1 can then be

removed from R, whereupon the circuit remains in the reset state. When both inputs S and R are equal to

0, the latch can be in either the set or the reset state, depending on which input was most recently a 1.

 If a 1 is applied to both the S and R inputs of the latch, both outputs go to 0. This action produces an

undefined next state, because the state that results from the input transitions depends on the order in

which they return to 0. It also violates the requirement that outputs be the complement of each other. In

normal operation, this condition is avoided by making sure that 1’s are not applied to both inputs

simultaneously.

 Truth table for SR latch designed with NOR gates is shown below.

Input Output Comment

S R Q Q’ QNe
xt

Q’Ne
xt

0 0 0 1 0 1 No change

0 0 1 0 1 0

0 1 0 1 0 1 Reset

0 1 1 0 0 1

1 0 0 1 1 0 Set

1 0 1 0 1 0

1 1 0 1 X X Prohibited

state 1 1 1 0 X X

Symbol for SR NOR Latch

Racing Condition:-

In case of a SR latch when S=R=1 input is given both the output will try to become 0. This is called

Racing condition.

SR latch using NAND gate:-

 The below figure represents a SR latch with two cross-coupled NAND gates. The circuit has NAND

gates and as we know if any one of the input for a NAND gate is LOW then its output will be HIGH and

if both the inputs are HIGH then only the output will be LOW.

 It operates with both inputs normally at 1, unless the state of the latch has to be changed. The application

of 0 to the S input causes output Q to go to 1, putting the latch in the set state. When the S input goes

back to 1, the circuit remains in the set state. After both inputs go back to 1, we are allowed to change

the state of the latch by placing a 0 in the R input. This action causes the circuit to go to the reset state

and stay there even after both inputs return to 1.

 The condition that is forbidden for the NAND latch is both inputs being equal to 0 at the same time, an

input combination that should be avoided.

In comparing the NAND with the NOR latch, note that the input signals for the NAND require the complement

of those values used for the NOR latch. Because the NAND latch requires a 0 signal to change its state, it is

sometimes referred to as an S’R’ latch. The primes (or, sometimes, bars over the letters) designate the fact that

the inputs must be in their complement form to activate the circuit.

The above represents the symbol for inverted SR latch or SR latch using NAND gate.

Truth table for SR latch using NAND gate or Inverted SR latch
S R Qnext Q’next
0 0 Race Race
0 1 0 1 (Reset)
1 0 1 0 (Set)
1 1 Q (No change) Q’ (No change)

D LATCH:-

 One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to ensure that

inputs S and R are never equal to 1 at the same time.

 This is done in the D latch. This latch has only two inputs: D (data) and En (enable).
 The D input goes directly to the S input, and its complement is applied to the R input.

(Symbol for D-Latch)

 As long as the enable input is at 0, the cross-coupled SR latch has both inputs at the 1 level and the

circuit can’t change state regardless of the value of D.

 The below represents the truth table for the D-latch.

En D Next State of Q

0 X No change
1 0 Q=0;Reset State
1 1 Q=1;Set State

 The D input is sampled when En = 1. If D = 1, the Q output goes to 1, placing the circuit in the set state.

If D = 0, output Q goes to 0, placing the circuit in the reset state. This situation provides a path from

input D to the output, and for this reason, the circuit is often called a TRANSPARENT latch.

TRIGGERING METHODS:-

 The state of a latch or flip-flop is switched by a change in the control input. This momentary change is

called a trigger, and the transition it causes is said to trigger the flip-flop.

 Flip-flop circuits are constructed in such a way as to make them operate properly when they are part of a

sequential circuit that employs a common clock.

 The problem with the latch is that it responds to a change in the level of a clock pulse. For proper

operation of a flip-flop it should be triggered only during a signal transition.

 This can be accomplished by eliminating the feedback path that is inherent in the operation of the

sequential circuit using latches. A clock pulse goes through two transitions: from 0 to 1 and the return

from 1 to 0.

 A ways that a latch can be modified to form a flip-flop is to produce a flip-flop that triggers only during

a signal transition (from 0 to 1 or from 1 to 0) of the synchronizing signal (clock) and is disabled during

the rest of the clock pulse.

JK FLIP-FLOP:-
 The JK flip-flop can be constructed by using basic SR latch and a clock. In this case the outputs Q and

Q’ are returned back and connected to the inputs of NAND gates.

 This simple JK flip Flop is the most widely used of all the flip-flop designs and is considered to be a

universal flip-flop circuit.

 The sequential operation of the JK flip flop is exactly the same as for the previous SR flip-flop with the

same “Set” and “Reset” inputs.

 The difference this time is that the “JK flip flop” has no invalid or forbidden input states of the SR Latch

even when S and R are both at logic “1”.
(The below diagram shows the circuit diagram of a JK flip-flop)

 The JK flip flop is basically a gated SR Flip-flop with the addition of a clock input circuitry that prevents

the illegal or invalid output condition that can occur when both inputs S and R are equal to logic level

“1”.

 Due to this additional clocked input, a JK flip-flop has four possible input combinations, “logic 1”,

“logic 0”, “no change” and “toggle”.

 The symbol for a JK flip flop is similar to that of an SR bistable latch except the clock input.

(The above diagram shows the symbol of a JK flip-flop.)

 Both the S and the R inputs of the SR bi-stable have now been replaced by two inputs called the J and K

inputs, respectively after its inventor Jack and Kilby. Then this equates to: J = S and K = R.

 The two 2-input NAND gates of the gated SR bi-stable have now been replaced by two 3-input NAND

gates with the third input of each gate connected to the outputs at Q and Q’.

 This cross coupling of the SR flip-flop allows the previously invalid condition of S = “1” and R = “1”

state to be used to produce a “toggle action” as the two inputs are now interlocked.

 If the circuit is now “SET” the J input is inhibited by the “0” status of Q’ through the lower NAND gate.

If the circuit is “RESET” the K input is inhibited by the “0” status of Q through the upper NAND gate.

As Q and Q’ are always different we can use them to control the input.

(Truth table for JK flip-flop)

Input Output Comment

J K Q Qne
xt

0 0 0 0 No change
0 0 1 1
0 1 0 0 Reset
0 1 1 0
1 0 0 1 Set
1 0 1 1
1 1 0 1 Toggle
1 1 1 0

 When both inputs J and K are equal to logic “1”, the JK flip flop toggles.

T FLIP-FLOP:-

 Toggle flip-flop or commonly known as T flip-flop.
 This flip-flop has the similar operation as that of the JK flip-flop with both the inputs J and K are shorted

i.e. both are given the common input.

 Hence its truth table is same as that of JK flip-flop when J=K= 0 and J=K=1.So its truth table is as

follows.

T Q Qne
xt

Comment

0 0 0 No change
1 1

1 0 1 Toggles
1 0

CHARACTERISTIC TABLE:-

 A characteristic table defines the logical properties of a flip-flop by describing its operation in tabular

form.

 The next state is defined as a function of the inputs and the present state.
 Q (t) refers to the present state and Q (t + 1) is the next.
 Thus, Q (t) denotes the state of the flip-flop immediately before the clock edge, and Q(t + 1) denotes the

state that results from the clock transition.

 The characteristic table for the JK flip-flop shows that the next state is equal to the present state when

inputs J and K are both equal to 0. This condition can be expressed as Q (t + 1) = Q (t), indicating that

the clock produces no change of state.

Characteristic Table Of JK Flip-Flop

J K Q(t+1)

0 0 Q(t) No change

0 1 0 Reset

1 0 1 Set

1 1 Q’(t) Complement

 When K = 1 and J = 0, the clock resets the flip-flop and Q(t + 1) = 0. With J = 1 and K = 0, the flip-flop

sets and Q(t + 1) = 1. When both J and K are equal to 1, the next state changes to the complement of the

present state, a transition that can be expressed as Q(t + 1) = Q’(t).

 The characteristic equation for JK flip-flop is represented as
Q(t+1)= JQ’ + K’Q

Characteristic Table of D Flip-Flop

D Q(t+1)

0 0

1 1

 The next state of a D flip-flop is dependent only on the D input and is independent of the present state.
 This can be expressed as Q (t + 1) = D. It means that the next-state value is equal to the value of D. Note

that the D flip-flop does not have a “no-change” condition and its characteristic equation is written as

Q(t+1)=D.

Characteristic Table of T Flip-Flop

T Q(t+1)

0 Q(t) No change

1 Q’(t) Complement

 The characteristic table of T flip-flop has only two conditions: When T = 0, the clock edge does not

change the state; when T = 1, the clock edge complements the state of the flip-flop and the characteristic

equation is

MASTER-SLAVE JK FLIP-FLOP:-

 The Master-Slave Flip-Flop is basically two gated SR flip-flops connected together in a series

configuration with the slave having an inverted clock pulse.

 The outputs from Q and Q’ from the “Slave” flip-flop are fed back to the inputs of the “Master” with the

outputs of the “Master” flip flop being connected to the two inputs of the “Slave” flip flop.

 This feedback configuration from the slave’s output to the master’s input gives the characteristic toggle
of the JK flip flop as shown below.

The Master-Slave JK Flip Flop

 The input signals J and K are connected to the gated “master” SR flip flop which “locks” the input

condition while the clock (Clk) input is “HIGH” at logic level “1”.

 As the clock input of the “slave” flip flop is the inverse (complement) of the “master” clock input, the
“slave” SR flip flop does not toggle.

 The outputs from the “master” flip flop are only “seen” by the gated “slave” flip flop when the clock

input goes “LOW” to logic level “0”.

 When the clock is “LOW”, the outputs from the “master” flip flop are latched and any additional

changes to its inputs are ignored.

 The gated “slave” flip flop now responds to the state of its inputs passed over by the “master” section.
 Then on the “Low-to-High” transition of the clock pulse the inputs of the “master” flip flop are fed

through to the gated inputs of the “slave” flip flop and on the “High-to-Low” transition the same inputs

are reflected on the output of the “slave” making this type of flip flop edge or pulse-triggered.

 Then, the circuit accepts input data when the clock signal is “HIGH”, and passes the data to the output

on the falling-edge of the clock signal.

 In other words, the Master-Slave JK Flip flop is a “Synchronous” device as it only passes data with the
timing of the clock signal.

FLIP-FLOP CONVERSIONS:-

SR Flip Flop to JK Flip Flop

For this J and K will be given as external inputs to S and R. As shown in the logic diagram below, S and R will

be the outputs of the combinational circuit.

The truth tables for the flip flop conversion are given below. The present state is represented by Qp and Qp+1 is

the next state to be obtained when the J and K inputs are applied.

For two inputs J and K, there will be eight possible combinations. For each combination of J, K and Qp, the

corresponding Qp+1 states are found. Qp+1 simply suggests the future values to be obtained by the JK flip flop

after the value of Qp. The table is then completed by writing the values of S and R required to get each Qp+1

from the corresponding Qp. That is, the values of S and R that are required to change the state of the flip flop

from Qp to Qp+1 are written.

JK Flip Flop to SR Flip Flop

 This will be the reverse process of the above explained conversion. S and R will be the external inputs to

J and K. J and K will be the outputs of the combinational circuit. Thus, the values of J and K have to be

obtained in terms of S, R and Qp.

 A conversion table is to be written using S, R, Qp, Qp+1, J and K.
 For two inputs, S and R, eight combinations are made. For each combination, the corresponding Qp+1

outputs are found out.

 The outputs for the combinations of S=1 and R=1 are not permitted for an SR flip flop. Thus the outputs

are considered invalid and the J and K values are taken as “don’t cares”.

SR Flip Flop to D Flip Flop

 S and R are the actual inputs of the flip flop and D is the external input of the flip flop.

 The four combinations, the logic diagram, conversion table, and the K-map for S and R in terms of D

and Qp are shown below.

D Flip Flop to SR Flip Flop

 D is the actual input of the flip flop and S and R are the external inputs. Eight possible combinations are

achieved from the external inputs S, R and Qp.

 But, since the combination of S=1 and R=1 are invalid, the values of Qp+1 and D are considered as

“don’t cares”.

 The logic diagram showing the conversion from D to SR, and the K-map for D in terms of S, R and Qp

are shown below.

JK Flip Flop to T Flip Flop:-

 J and K are the actual inputs of the flip flop and T is taken as the external input for conversion
 Four combinations are produced with T and Qp. J and K are expressed in terms of T and Qp.

 The conversion table, K-maps, and the logic diagram are given below.

D Flip Flop to JK Flip Flop:-

 In this conversion, D is the actual input to the flip flop and J and K are the external inputs.
 J, K and Qp make eight possible combinations, as shown in the conversion table below. D is expressed

in terms of J, K and Qp.

 The conversion table, the K-map for D in terms of J, K and Qp and the logic diagram showing the

conversion from D to JK are given in the figure below.

JK Flip Flop to D Flip Flop:-

 D is the external input and J and K are the actual inputs of the flip flop. D and Qp make four

combinations. J and K are expressed in terms of D and Qp.

 The four combination conversion table, the K-maps for J and K in terms of D and Qp.

COMBINATIONAL LOGIC CIRCUIT

 A combinational circuit consists of logic gates whose outputs at any time are determined from only the

present combination of inputs.

 A combinational circuit performs an operation that can be specified logically by a set of Boolean

functions.

 It consists of an interconnection of logic gates. Combinational logic gates react to the values of the

signals at their inputs and produce the value of the output signal, transforming binary information from

the given input data to a required output data.

 A block diagram of a combinational circuit is shown in the below figure.
 The n input binary variables come from an external source; the m output variables are produced by the

internal combinational logic circuit and go to an external destination.

 Each input and output variable exists physically as an analog signal whose values are interpreted to be a

binary signal that represents logic 1and logic 0.

BINARY ADDER–SUBTRACTOR:-

 Digital computers perform a variety of information-processing tasks. Among the functions encountered

are the various arithmetic operations.

 The most basic arithmetic operation is the addition of two binary digits. This simple addition consists of
four possible elementary operations: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10.

 The first three operations produce a sum of one digit, but when both augend and addend bits are equal to

1; the binary sum consists of two digits. The higher significant bit of this result is called a carry.

 When the augend and addend numbers contain more significant digits, the carry obtained from the

addition of two bits is added to the next higher order pair of significant bits.

 A combinational circuit that performs the addition of two bits is called a half adder.
 One that performs the addition of three bits (two significant bits and a previous carry) is a full adder. The

names of the circuits stem from the fact that two half adders can be employed to implement a full adder.

HALF ADDER:-

 This circuit needs two binary inputs and two binary outputs.
 The input variables designate the augend and addend bits; the output variables produce the sum and

carry. Symbols x and y are assigned to the two inputs and S (for sum) and C (for carry) to the outputs.

 The truth table for the half adder is listed in the below table.
 The C output is 1 only when both inputs are 1. The S output represents the least significant bit of the

sum.

 The simplified Boolean functions for the two outputs can be obtained directly from the truth table.

 The simplified sum-of-products expressions are

S = x’y +

xy’ C =

xy

 The logic diagram of the half adder implemented in sum of products is shown in the below figure. It can

be also implemented with an exclusive-OR and an AND gate.

FULL ADDER:-

 A full adder is a combinational circuit that forms the arithmetic sum of three bits.
 It consists of three inputs and two outputs. Two of the input variables, denoted by x and y , represent the

two significant bits to be added. The third input, z , represents the carry from the previous lower

significant position.

 Two outputs are necessary because the arithmetic sum of three binary digits ranges in value from 0 to 3,

and binary representation of 2 or 3 needs two bits. The two outputs are designated by the symbols S for

sum and C for carry.

 The binary variable S gives the value of the least significant bit of the sum. The binary variable C gives

the output carry formed by adding the input carry and the bits of the words.

 The eight rows under the input variables designate all possible combinations of the three variables. The

output variables are determined from the arithmetic sum of the input bits. When all input bits are 0, the

output is 0.

 The S output is equal to 1 when only one input is equal to 1 or when all three inputs are equal to 1. The

C output has a carry of 1 if two or three inputs are equal to 1.

 The simplified expressions are

S = x’y’z + x’yz’ + xy’z’ + xyz

C = xy + xz + yz

 The logic diagram for the full adder implemented in sum-of-products form is shown in figure.

 It can also be implemented with two half adders and one OR gate as shown in the figure.

 A full adder is a combinational circuit that forms the arithmetic sum of three

bits. BINARY ADDER:-

 A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers.
 It can be constructed with full adders connected in cascade, with the output carry from each full adder

connected to the input carry of the next full adder in the chain.

 Addition of n-bit numbers requires a chain of n full adders or a chain of one-half adder and n-1 full

adders. In the former case, the input carry to the least significant position is fixed at 0.

 The interconnection of four full-adder (FA) circuits to provide a four-bit binary ripple carry adder is

shown in the figure.

 The augend bits of A and the addend bits of B are designated by subscript numbers from right to left,
with subscript 0 denoting the least significant bit.

 The carries are connected in a chain through the full adders. The input carry to the adder is C0, and it

ripples through the full adders to the output carry C4. The S outputs generate the required sum bits.

 An n -bit adder requires n full adders, with each output carry connected to the input carry of the next

higher order full adder.

 Consider the two binary numbers A = 1011 and B = 0011. Their sum S = 1110 is formed with the four-

bit adder as follows:

 The bits are added with full adders, starting from the least significant position (subscript 0), to form the

sum bit and carry bit. The input carry C0 in the least significant position must be 0.

 The value of Ci+1 in a given significant position is the output carry of the full adder. This value is

transferred into the input carry of the full adder that adds the bits one higher significant position to the

left.

 The sum bits are thus generated starting from the rightmost position and are available as soon as the

corresponding previous carry bit is generated. All the carries must be generated for the correct sum bits

to appear at the outputs.

HALF SUBTRACTOR:-
 This circuit needs two binary inputs and two binary outputs.
 Symbols x and y are assigned to the two inputs and D (for difference) and B (for borrow) to the outputs.
 The truth table for the half subtractor is listed in the below table.

 The B output is 1 only when the inputs are 0 and 1. The D output represents the least significant bit of

the subtraction.

 The subtraction operation is done by using the following rules as
0-0=0;

0-1=1 with borrow 1;
1-0=1;
1-1=0.

 The simplified Boolean functions for the two outputs can be obtained directly from the truth table. The

simplified sum-of-products expressions are

D = x’y + xy’ and B =x’y

 The logic diagram of the half adder implemented in sum of products is shown in the figure. It can be also

implemented with an exclusive-OR and an AND gate with one inverted input.

FULL SUBTRACTOR:-

 A full subtractor is a combinational circuit that forms the arithmetic subtraction operation of three bits.
 It consists of three inputs and two outputs. Two of the input variables, denoted by x and y , represent the

two significant bits to be subtracted. The third input, z , is subtracted from the result 0f the first

subtraction.

 Two outputs are necessary because the arithmetic subtraction of three binary digits ranges in value from

0 to 3, and binary representation of 2 or 3 needs two bits. The two outputs are designated by the symbols

D for difference and B for borrow.

 The binary variable D gives the value of the least significant bit of the difference. The binary variable B

gives the output borrow formed during the subtraction process.

 The eight rows under the input variables designate all possible combinations of the three variables. The

output variables are determined from the arithmetic subtraction of the input bits.

 The difference D becomes 1 when any one of the input is 1or all three inputs are equal to1 and the

borrow B is 1 when the input combination is (0 0 1) or (0 1 0) or (0 1 1) or (1 1 1).

 The simplified expressions are
D = x’y’z + x’yz’ + xy’z’ +

xyz B = x’z + x’y + yz

 The logic diagram for the full adder implemented in sum-of-products form is shown in figure.

MAGNITUDE COMPARATOR:-
 A magnitude comparator is a combinational circuit that compares two numbers A and B and determines

their relative magnitudes.

 The following description is about a 2-bit magnitude comparator circuit.
 The outcome of the comparison is specified by three binary variables that indicate whether A < B, A =

B, or A > B.

 Consider two numbers, A and B, with two digits each. Now writing the coefficients of the numbers in

descending order of significance:

A = A1

A0 B =

B1 B0

 The two numbers are equal if all pairs of significant digits are equal i.e. if and only if A1 = B1, and A0 =

B0.

 When the numbers are binary, the digits are either 1 or 0, and the equality of each pair of bits can be

expressed logically with an exclusive-NOR function as
x1=A1B1+A1’B1’

And x0=A0B0+A0’B0’

 The equality of the two numbers A and B is displayed in a combinational circuit by an output binary

variable that we designate by the symbol (A = B).

 This binary variable is equal to 1 if the input numbers, A and B , are equal, and is equal to 0 otherwise.
 For equality to exist, all xi variables must be equal to 1, a condition that dictates an AND operation of all

variables:
(A = B) = x1x0

 The binary variable (A = B) is equal to 1 only if all pairs of digits of the two numbers are equal.
 To determine whether A is greater or less than B, we inspect the relative magnitudes of pairs of

significant digits, starting from the most significant position. If the two digits of a pair are equal, we

compare the next lower significant pair of digits. If the corresponding digit of A is 1 and that of B is 0,

we conclude that A > B. If the corresponding digit of A is 0 and that of B is 1, we have A < B. The

sequential comparison can be expressed logically by the two Boolean functions

(A > B) =

A1B1’+x1A0B’0 (A < B)

= A1’ B1 +x1A0’B0’

Ai A B Br A>B A<B A=B

0

0

0

0

0

0

0

0

0

0

1

1

0

1

0

1

o

o

o

0

o

¿

o
o

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

1

1

o

o

0

0

o

¿

0

o

1

1

1

1

0

0

0

0

0

0

1

1

0

1

0

1

o

o

o
o
o

i

o
o
i

o

1

1

1

1

1

1

1

1

0

0

1

1

0

1

0

1

i

i

o

o

o
o

o

o

o
o

i

Truth Table

Logic Diagram of 2-bit Magnitude Comparator

DECODER:-

 A decoder is a combinational circuit that converts binary information from n input lines to a maximum

of 2n unique output lines.

 If the n -bit coded information has unused combinations, the decoder may have fewer than 2n outputs.
 The decoders presented here are called n -to- m -line decoders, where m … 2n.
 Their purpose is to generate the 2n (or fewer) minterms of n input variables.
 Each combination of inputs will assert a unique output. The name decoder is also used in conjunction

with other code converters, such as a BCD-to-seven-segment decoder.

 Consider the three-to-eight-line decoder circuit of three inputs are decoded into eight outputs, each

representing one of the minterms of the three input variables.

 The three inverters provide the complement of the inputs, and each one of the eight AND gates generates

one of the minterms.

 The input variables represent a binary number, and the outputs represent the eight digits of a number in

the octal number system.

 However, a three-to-eight-line decoder can be used for decoding any three-bit code to provide eight

outputs, one for each element of the code.

 A two-to-four-line decoder with an enable input constructed with NAND gates is shown in Fig.
 The circuit operates with complemented outputs and a complement enable input. The decoder is enabled

when E is equal to 0 (i.e., active-low enable). As indicated by the truth table, only one output can be

equal to 0 at any given time; all other outputs are equal to 1.

 The output whose value is equal to 0 represents the minterm selected by inputs A and B.
 The circuit is disabled when E is equal to 1, regardless of the values of the other two inputs.
 When the circuit is disabled, none of the outputs are equal to 0 and none of the minterms are selected.
 In general, a decoder may operate with complemented or un-complemented outputs.
 The enable input may be activated with a 0 or with a 1 signal.
 Some decoders have two or more enable inputs that must satisfy a given logic condition in order to

enable the circuit.

 A decoder with enable input can function as a demultiplexer— a circuit that receives information from a

single line and directs it to one of 2n possible output lines.

 The selection of a specific output is controlled by the bit combination of n selection lines.
 The decoder of Fig. can function as a one-to-four-line demultiplexer when E is taken as a data input line

and A and B are taken as the selection inputs.

 The single input variable E has a path to all four outputs, but the input information is directed to only

one of the output lines, as specified by the binary combination of the two selection lines A and B .

 This feature can be verified from the truth table of the circuit.
 For example, if the selection lines AB = 10, output D2 will be the same as the input value E, while all

other outputs are maintained at 1.

 Since decoder and demultiplexer operations are obtained from the same circuit, a decoder with an

enable input is referred to as a decoder – demultiplexer.

 A application of this decoder is binary-to-octal conversion.

ENCODER:-
 An encoder is a digital circuit that performs the inverse operation of a decoder.
 An encoder has 2n (or fewer) input lines and n output lines.
 The output lines, as an aggregate, generate the binary code corresponding to the input value.

 The above Encoder has eight inputs (one for each of the octal digits) and three outputs that generate the

corresponding binary number.

 It is assumed that only one input has a value of 1 at any given time.
 The encoder can be implemented with OR gates whose inputs are determined directly from the truth

table.

 Output z is equal to 1 when the input octal digit is 1, 3, 5, or 7.
 Output y is 1 for octal digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5, 6, or 7.
 These conditions can be expressed by the following Boolean output functions:

z = D1 + D3 + D5 +

D7 y = D2 + D3 + D6

+ D7 x = D4 + D5 +

D6 + D7

 The encoder can be implemented with three OR gates.
 The encoder defined above has the limitation that only one input can be active at any given time.
 If two inputs are active simultaneously, the output produces an undefined

combination.

 To resolve this ambiguity, encoder circuits must establish an input priority to ensure that only one input

is encoded which is done in the Priority Encoder .

PRIORITY ENCODER:-

 A priority encoder is an encoder circuit that includes the priority function.
 The operation of the priority encoder is such that if two or more inputs are equal to 1 at the same time,

the input having the highest priority will take precedence.

 In addition to the two outputs x and y , the circuit has a third output designated by V ; this is a valid bit

indicator that is set to 1 when one or

more inputs are equal to 1.

 If all inputs are 0, there is no valid input and V is equal to 0.
 The other two outputs are not inspected when V equals 0 and are specified as don’t-care conditions.
 Here X ’s in output columns represent don’t-care conditions, the X ’s in the input columns are useful for

representing a truth table in condensed form.

 Higher the subscript number, the higher the priority of the input.
 Input D3 has the highest priority, so, regardless of the values of the other

inputs, when this input is 1, the output for xy is 11 (binary 3).

 If D2 = 1, provided that D3 = 0, regardless of the values of the other two lower priority inputs the output

is 10.

 The output for D1 is generated only if higher priority inputs are 0, and so on down the priority levels.

 The maps for simplifying outputs x and y are shown in above Fig.
 The minterms for the two functions are derived from its truth table.
 Although the table has only five rows, when each X in a row is replaced first by 0 and then by 1, we

obtain all 16 possible input combinations.

 For example, the fourth row in the table, with inputs XX10, represents the four minterms 0010, 0110,

1010, and 1110. The simplified Boolean expressions for the priority encoder are obtained from the maps.
 The condition for output V is an OR function of all the input variables.
 The priority encoder is implemented according to the following Boolean

functions: x = D2 + D3
y = D3 + D1 D’2

V = D0 + D1 + D2 + D3

MULTIPLEXER:-
 A multiplexer is a combinational circuit that selects binary information from one of many input lines and

directs it to a single output line.

 The selection of a particular input line is controlled by a set of selection lines.
 Normally, there are 2n input lines and n selection lines whose bit combinations determine which input is

selected.

 A four-to-one-line multiplexer is shown in the below figure. Each of the four inputs, I0 through I3, is

applied to one input of an AND gate.

 Selection lines S1 and S0 are decoded to select a particular AND gate. The outputs of the AND gates are

applied to a single OR gate that provides the one-line output.

 The function table lists the input that is passed to the output for each combination of the binary selection

values.

 To demonstrate the operation of the circuit, consider the case when
S1S0= 10.

 The AND gate associated with input I2 has two of its inputs equal to 1 and the third input connected to

I2.

 The other three AND gates have at least one input equal to 0, which makes their outputs equal to 0. The

output of the OR gate is now equal to the value of I2, providing a path from the selected input to the

output.

 A multiplexer is also called a data selector, since it selects one of many inputs and steers the binary

information to the output line.

DEMULTIPLEXER:-

 The data distributor, known more commonly as a Demultiplexer or “Demux” for short, is the exact

opposite of the Multiplexer.

 The demultiplexer takes one single input data line and then switches it to any one of a number of

individual output lines one at a time. The demultiplexer converts a serial data signal at the input to a

parallel data at its output lines as shown below.

 The Boolean expression for this 1-to-4 demultiplexer above with outputs A to D and data select lines a, b
is given as:

F = (ab)’A + a’bB + ab’C + abD

 The function of the demultiplexer is to switch one common data input line to any one of the 4 output

data lines A to D in our example above. As with the multiplexer the individual solid state switches are

selected by the binary input address code on the output select pins “a” and “b” as shown.

 Unlike multiplexers which convert data from a single data line to multiple lines and demultiplexers

which convert multiple lines to a single data line, there are devices available which convert data to and

from multiple lines and in the next tutorial about combinational logic devices.

 Standard demultiplexer IC packages available are the TTL 74LS138 1 to 8-output demultiplexer, the

TTL 74LS139 Dual 1-to-4 output demultiplexer or the CMOS CD4514 1-to-16 output demultiplexer.

COUNTER

 A counter is a device which stores (and sometimes displays) the number of times a particular event or

process has occurred. In electronics, counters can be implemented quite easily using register-type circuits.

 There are different types of counters, viz.

o Asynchronous (ripple) counter
o Synchronous counter
o Decade counter
o Up/down counter
o Ring counter
o Johnson counter
o Cascaded counter
o Modulus counter.

Synchronous counter

 A 4-bit synchronous counter using JK flip-flops is shown in the figure.
 In synchronous counters, the clock inputs of all the flip-flops are connected together and are triggered

by the input pulses. Thus, all the flip-flops change state simultaneously (in parallel).

 The circuit below is a 4-bit synchronous counter.
 The J and K inputs of FF0 are connected to HIGH. FF1 has its J and K inputs connected to the output

of FF0, and the J and K inputs of FF2 are connected to the output of an AND gate that is fed by the

outputs of FF0 and FF1.

 A simple way of implementing the logic for each bit of an ascending counter (which is what is depicted

in the image to the right) is for each bit to toggle when all of the less significant bits are at a logic high

state.

 For example, bit 1 toggles when bit 0 is logic high; bit 2 toggles when both bit 1 and bit 0 are logic high;

bit 3 toggles when bit 2, bit 1 and bit 0 are all high; and so on.

 Synchronous counters can also be implemented with hardware finite state machines, which are more

complex but allow for smoother, more stable transitions.

Asynchronous Counter

 An asynchronous (ripple) counter is a single d-type flip-flop, with its J (data) input fed from its own

inverted output.

 This circuit can store one bit, and hence can count from zero to one before it overflows (starts over from

0).

 This counter will increment once for every clock cycle and takes two clock cycles to overflow, so every

cycle it will alternate between a transition from 0 to 1 and a transition from 1 to 0.

 This creates a new clock with a 50% duty cycle at exactly half the frequency of the input clock.
 If this output is then used as the clock signal for a similarly arranged D flip-flop, remembering to invert

the output to the input, one will get another 1 bit counter that counts half as fast. These together yield a

two-bit counter.

 Additional flip-flops can be added, by always inverting the output to its own input, and using the output
from the previous flip-flop as the clock signal. The result is called a ripple counter, which can count to

2
n

– 1, where n is the number of bits (flip-flop stages) in the counter.
 Ripple counters suffer from unstable outputs as the overflows "ripple" from stage to stage, but they find

application as dividers for clock signals.

Modulus Counter

 A modulus counter is that which produces an output pulse after a certain number of input pulses is

applied.

 In modulus counter the total count possible is based on the number of stages, i.e., digit positions.

 Modulus counters are used in digital computers.
 A binary modulo-8 counter with three flip-flops, i.e., three stages, will produce an output pulse, i.e.,

display an output one-digit, after eight input pulses have been counted, i.e., entered or applied. This

assumes that the counter started in the zero-condition.

Asynchronous Decade Counter

 A decade counter can count from BCD “0” to BCD “9”.

 A decade counter requires resetting to zero when the output count reaches the decimal value of 10, ie.

when DCBA = 1010 and this condition is fed back to the reset input.

 A counter with a count sequence from binary “0000” (BCD = “0”) through to “1001” (BCD = “9”) is

generally referred to as a BCD binary-coded-decimal counter because its ten state sequence is that of a

BCD code but binary decade counters are more common.

 This type of asynchronous counter counts upwards on each leading edge of the input clock signal

starting from 0000 until it reaches an output 1001 (decimal 9).

 Both outputs QA and QD are now equal to logic “1” and the output from the NAND gate changes state

from logic “1” to a logic “0” level and whose output is also connected to the CLEAR (CLR) inputs of

all the J-K Flip-flops.

 This signal causes all of the Q outputs to be reset back to binary 0000 on the count of 10. Once QA and

QD are both equal to logic “0” the output of the NAND gate returns back to a logic level “1” and the

counter restarts again from 0000. We now have a decade or Modulo-10 counter.

Decade Counter Truth Table

Up/Down Counter

 In a synchronous up-down binary counter the flip-flop in the lowest-order position is complemented

with every pulse.

 A flip-flop in any other position is complemented with a pulse, provided all the lower-order pulse equal

to 0.

 Up/Down counter is used to control the direction of the counter through a certain sequence.

 From the sequence table we can observe that:
o For both the UP and DOWN sequences, Q0 toggles on each clock pulse.
o For the UP sequence, Q1 changes state on the next clock pulse when Q0=1.
o For the DOWN sequence, Q1 changes state on the next clock pulse when Q0=0.
o For the UP sequence, Q2 changes state on the next clock pulse when Q0=Q1=1.
o For the DOWN sequence, Q2 changes state on the next clock pulse when Q0=Q1=0.

 These characteristics are implemented with the AND, OR & NOT logic connected as shown in the logic

diagram above.

INTRODUCTION:-

REGISTERS

 The sequential circuits known as register are very important logical block in most of the digital systems.

 Registers are used for storage and transfer of binary information in a digital system.

 A register is mostly used for the purpose of storing and shifting binary data entered into it from an

external source and has no characteristics internal sequence of states.

 The storage capacity of a register is defined as the number of bits of digital data, it can store or retain.

 These registers are normally used for temporary storage of data.

BUFFER REGISTER:-

 These are the simplest registers and are used for simply storing a binary word.

 These may be controlled by Controlled Buffer Register.

 D flip – flops are used for constructing a buffer register or other flip- flop can be used.

 The figure shown below is a 4- bit buffer register.

 The binary word to be stored is applied to the data terminals.

 When the clock pulse is applied, the output word becomes the same as the word applied at the input

terminals, i.e. the input word is loaded into the register by the application of clock pulse.

 When the positive clock edge arrives, the stored word becomes:

Q4 Q3 Q2 Q1= X4 X3 X2 X1

or Q = X .

This circuit is too primitive to be of any use.

CONTROLLED BUFFER REGISTER:-

 The figure shows a controlled buffer register.

 If CLR goes LOW, all the flip-flops are RESET and the output becomes, Q = 0000.
 When CLR is HIGH, the register is ready for action

 LOAD is control input.

 When LOAD is HIGH, the data bits X can reach the D inputs of FFs.

 At the positive going edge of the next clock pulse, the register is loaded, i.e.

Q4 Q3 Q2 Q1= X4 X3 X2 X1

or Q = X .

 When LOAD is LOW, the X bits cannot reach the FFs. At the same time the inverted signal

LOAD is HIGH. This forces each flip-flop output to feedback to its data input.

 Therefore data is circulated or retained as each clock pulse arrives.

 In other words the content register remains unchanged in spite of the clock pulses.

 Longer buffer registers can built by adding more FFs.

CONTROLLED BUFFER REGISTER:-

 A number of FFs connected together such that data may be shifted into and shifted out of them is called

a shift register.

 Data may be shifted into or out of the register either in serial form or in parallel form.

 There are four basic types of shift registers

1. Serial in, serial out

2. Serial in, parallel out

3. Parallel in, serial out

4. Parallel in , parallel out

SERIAL IN, SERIAL OUT SHIFT REGISTER:-

 This type of shift register accepts data serially, i.e., one bit at a time and also outputs data serially.

 The logic diagram of a four bit serial in, serial out shift register is shown in below figure:

 In 4 stages i.e. with 4 FFs, the register can store upto 4 bits of data.

 Serial data is applied at the D input of the first FF. The Q output of the first FF is connected to the D

input of the second FF, the output of the second FF is connected to the D input of the third FF and the Q

output of the third FF is connected to the D input of the fourth FF. The data is outputted from the Q

terminal of the last FF.

 When a serial data is transferred to a register, each new bit is clocked into the first FF at the positive

going edge of each clock pulse.

 The bit that is previously stored by the first FF is transferred to the second FF.

 The bit that is stored by the second FF is transferred to the third FF, and so on.

 The bit that was stored by the last FF is shifted out.

 A shift register can also be constructed using J-K FFs or S-R FFs as shown in the figure below.

SERIAL IN, PARALLEL OUT SHIFT REGISTER:-

 In this type of register, the data bits are entered into the register serially, but the data stored in the

register serially, but the stored in the register is shifted out in the parallel form.

 When the data bits are stored once, each bits appears on its respective output line and all bits are

available simultaneously, rather than bit – by – bit basis as in the serial output.

 The serial in, parallel out shift register can be used as a serial in, serial out shift register if the output is

taken from the Q terminal of the last FF.

 The logic diagram and logic symbol of a 4 bit serial in, parallel out shift register is given below.

A 4- bit serial in, parallel out shift register

PARALLEL IN, SERIAL OUT SHIFT REGISTER:-

 For parallel in, serial out shift register the data bits are entered simultaneously into their respective stages

on parallel lines, rather than on bit by bit basis on one line as with serial data inputs, but the data bits are

transferred out of the register serially, i.e., on a bit by bit basis over a single line.

 The logic diagram and logic symbol of 4 bit parallel in, serial out shift register using D FFs is shown

below.

 There are four data lines A, B, C and D through which the data is entered into the register in parallel

form.

 The signal Shift /LOAD allows

1. The data to be entered in parallel form into the register and

2. The data to be shifted out serially from terminal Q4.

 When Shift /LOAD line is HIGH, gates G1, G2, and G3 are disabled, but gates G4, G5 and G6 are

enabled allowing the data bits to shift right from one stage to next.

 When Shift /LOAD line is LOW, gates G4, G5 and G6 are disabled, whereas gates G1, G2 and G3 are

enabled allowing the data input to appear at the D inputs of the respective FFs.

 When clock pulse is applied, these data bits are shifted to the Q output terminals of the FFs and therefore

the data is inputted in one step.

 The OR gate allows either the normal shifting operation or the parallel data entry depending on which

AND gates are enabled by the level on the Shift /LOAD input.

A 4- bit parallel in, serial out shift register

PARALLEL IN, PARALLEL OUT SHIFT REGISTER:-

 In a parallel in, parallel out shift register, the data entered into the register in parallel form and also the

data taken out of the register in parallel form. Immediately following the simultaneous entry of all data

bits appear on the parallel outputs.

 The figure shown below is a 4 bit parallel in parallel out shift register using D FFs.

 Data applied to the D input terminals of the FFs.

 When a clock pulse is applied at the positive edge of that pulse, the D inputs are shifted into the Q

outputs of the FFs.

 The register now stores the data.

 The stored data is available instantaneously for shifting out in parallel form.

Logic diagram of a 4 – bit parallel in, parallel out shift register

BIDIRECTIONAL SHIFT REGISTER:-

 In bidirectional shift register is one in which the data bits can be shifted from left to right or from right to

left.

 The figure shown below the logic diagram of a 4 bit serial in, serial out, bidirectional (shift-left, shift-

right) shift register.
 Right /Left is the mode signal. When Right /Left is a 1, the logic circuit works as a shift right shift

register. When Right /Left is a 0, the logic circuit works as a shift right shift register.

 The bidirectional is achieved by using the mode signal and two AND gates and one OR gate for each

stage.

 A HIGH on the Right/Left control input enables the AND gates G1, G2, G3 and G4 and disables the AND

gates G5, G6, G7 and G8 and the state of Q output of each FF is passed through the gate to the D input of

the following FF. When clock pulse occurs, the data bits are effectively shifted one place to the right.

 A LOW Right/Left control input enables the AND gates G5, G6, G7 and G8 and disables the AND gates

G1, G2, G3 and G4 and the Q output of each FF is passed to the D input of the preceding FF. When clock

pulse occurs the data bits are then effectively shifted one place to the left.

 So, the circuit works as a bidirectional shift register.

Logic diagram of 4- bit bidirectional shift register

UNIVERSAL SHIFT REGISTERS:-

 The register which has both shifts and parallel load capabilities, it is referred as a universal shift register.

So, universal shift register is a bidirectional register, whose input can be either in serial form or in

parallel form and whose output also can be either in serial form or parallel form.

 The universal shift register can be realized using multiplexers.

 The figure shows the logic diagram of a 4 bit universal shift register that has all the capabilities of a

general shift register.

Fig- (a) 4 bit universal shift register

 It consists of four D flip- flops and four multiplexers.

 The four multiplexers have two common selection inputs S1 and S0.

 Input 0 in each multiplexer is selected when S1S0 = 00, input 1 is selected when S1S0 = 01, and

input 2 is selected when S1S0 = 10 and input 3 is selected when S1S0= 11.

 The selection inputs control the mode of operation of the register is according to the function entries

shown in the table.

 When S1S0 = 00 the present value of the register is applied to the D inputs of flip-flops. This condition

forms a path from the output of each FF into the input of the same FF.

 The next clock edge transfers into each FF the binary value it held previously, and no change of state

occurs.

 When S1S0 = 01, terminal 1 of the multiplexer inputs have a path of the D inputs of the flip- flops. This

causes a shift right operation, with serial input transferred into FF4.

 When S1S0 = 10 a shift left operation results with the other serial input going into the FF1.

 Finally when S1S0 = 11, the binary information on the parallel input lines is transferred into the register

simultaneously during the next clock edge.

Functional table for the register of fig – a:

APPLICATIONS OF SHIFT REGISTERS:-

1. Time delays:

 In digital systems, it is necessary to delay the transfer of data until the operation of the other

data have been completed, or to synchronize the arrival of data at

processed with other data.

 A shift register can be used to delay the arrival of serial data by a

a subsystem where it is

specific number of clock

1

pulses, since the number of stages corresponds to the number of clock pulses required to shift each bit

completely through the register.

 The total time delay can be controlled by adjusting the clock frequency and by the number of stages

in the register.

 In practice, the clock frequency is fixed and the total delay can be adjusted only by controlling the

number of stages through which the data is passed.

2. Serial / Parallel data conversion:

 Transfer of data in parallel form is much faster than that in serial form.

 Similarly the processing of data is much faster when all the data bits are available

simultaneously. Thus in digital systems in which speed is important so to operate on data parallel

form is used.

 When large data is to be transmitted over long distances, transmitting data on parallel lines is costly

and impracticable.

 It is convenient and economical to transmit data in serial form, since serial data transmission requires

only one line.

 Shift registers are used for converting serial data to parallel form, so that a serial input can be

processed by a parallel system and for converting parallel data to serial form, so that parallel data

can be transmitted serially.

 A serial in, parallel out shift register can be used to perform serial-to parallel conversion, and a

parallel in, serial out shift register can be used to perform parallel- to –serial conversion.

 A universal shift register can be used to perform both the serial- to – parallel and parallel-to- serial

data conversion.

 A bidirectional shift register can be used to reverse the order of data.

 Microprocessor

 The Microprocessor is a programmable device that takes in numbers, performs on them

arithmetic or logical operations according to the program stored in memory and then produces

other numbers as a result (Silicon chip which includes ALU, register circuits & control circuits).

A Programmable Machine can be represented with 4 components:-

1. Microprocessor

2. Input

 3. Memory

 4. Output

2

 Internal Architecture of 8085 Microprocessor:

3

 8085 is an 8-bit microprocessor designed by Intel in 1977 using NMOS technology.

 It has the following configuration −

 8-bit data bus

 16-bit address bus, which can address upto 64KB

 A 16-bit program counter

 A 16-bit stack pointer

 Six 8-bit registers arranged in pairs: BC, DE, HL

 Requires +5V supply to operate at 3.2 MHZ single phase clock

It is used in washing machines, microwave ovens, mobile phones, etc.

8085 Microprocessor – Functional Units

8085 consists of the following functional units −

Accumulator

It is an 8-bit register used to perform arithmetic, logical, I/O & LOAD/STORE operations. It is connected to internal

data bus & ALU.

Arithmetic and logic unit

As the name suggests, it performs arithmetic and logical operations like Addition, Subtraction, AND, OR, etc. on 8-bit

data.

General purpose register

There are 6 general purpose registers in 8085 processor, i.e. B, C, D, E, H & L. Each register can hold 8-bit data.

These registers can work in pair to hold 16-bit data and their pairing combination is like B-C, D-E & H-L.

Program counter

It is a 16-bit register used to store the memory address location of the next instruction to be executed. Microprocessor

increments the program whenever an instruction is being executed, so that the program counter points to the memory

address of the next instruction that is going to be executed.

Stack pointer

It is also a 16-bit register works like stack, which is always incremented/decremented by 2 during push & pop

operations.

Temporary register

It is an 8-bit register, which holds the temporary data of arithmetic and logical operations.

Flag register

It is an 8-bit register having five 1-bit flip-flops, which holds either 0 or 1 depending upon the result stored in the

accumulator.

These are the set of 5 flip-flops −

4

 Sign (S)

 Zero (Z)

 Auxiliary Carry (AC)

 Parity (P)

 Carry (C)

Its bit position is shown in the following table −

D7 D6 D5 D4 D3 D2 D1 D0

S Z AC P CY

Instruction register and decoder

It is an 8-bit register. When an instruction is fetched from memory then it is stored in the Instruction register.

Instruction decoder decodes the information present in the Instruction register.

Timing and control unit

It provides timing and control signal to the microprocessor to perform operations. Following are the timing and control

signals, which control external and internal circuits −

 Control Signals: READY, RD’, WR’, ALE

 Status Signals: S0, S1, IO/M’

 DMA Signals: HOLD, HLDA

 RESET Signals: RESET IN, RESET OUT

Interrupt control

As the name suggests it controls the interrupts during a process. When a microprocessor is executing a main program

and whenever an interrupt occurs, the microprocessor shifts the control from the main program to process the incoming

request. After the request is completed, the control goes back to the main program.

There are 5 interrupt signals in 8085 microprocessor: INTR, RST 7.5, RST 6.5, RST 5.5, TRAP.

Serial Input/output control

It controls the serial data communication by using these two instructions: SID (Serial input data) and SOD (Serial

output data).

Address buffer and address-data buffer

The content stored in the stack pointer and program counter is loaded into the address buffer and address-data buffer to

communicate with the CPU. The memory and I/O chips are connected to these buses; the CPU can exchange the

desired data with the memory and I/O chips.

Address bus and data bus

Data bus carries the data to be stored. It is bidirectional, whereas address bus carries the location to where it should be

stored and it is unidirectional. It is used to transfer the data & Address I/O devices.

5

6

The main features of 8085 microprocessor are:

 It is an 8 bit microprocessor.

 It is manufactured with N-MOS technology.

 It has 16-bit address bus and hence can address up to 216 = 65536 bytes

(64KB) memory locations through A0-A15

 The first 8 lines of address bus and 8 lines of data bus are multiplexed AD0 – AD7

 Data bus is a group of 8 lines D0 – D7

 It supports external interrupt request.

 A 16 bit program counter (PC)

 A 16 bit stack pointer (SP)

 Six 8-bit general purpose register arranged in pairs: BC, DE, HL.

 It requires a signal +5V power supply and operates at 3.2 MHZ single phase clock.

 It is enclosed with 40 pins DIP (Dual in line package).

The following image depicts the pin diagram of 8085 Microprocessor –

7

The pins of a 8085 microprocessor can be classified into seven groups −

Address bus

A15-A8, it carries the most significant 8-bits of memory/IO address.

Data bus

AD7-AD0, it carries the least significant 8-bit address and data bus.

Control and status signals

These signals are used to identify the nature of operation. There are 3 control signal and 3 status signals.

Three control signals are RD, WR & ALE.

 RD − This signal indicates that the selected IO or memory device is to be read and is ready for accepting

data available on the data bus.

 WR − This signal indicates that the data on the data bus is to be written into a selected memory or IO

location.

 ALE − It is a positive going pulse generated when a new operation is started by the microprocessor. When

the pulse goes high, it indicates address. When the pulse goes down it indicates data.

Three status signals are IO/M, S0 & S1.

IO/M

This signal is used to differentiate between IO and Memory operations, i.e. when it is high indicates IO operation

and when it is low then it indicates memory operation.

S1 & S0

These signals are used to identify the type of current operation.

Power supply

There are 2 power supply signals − VCC & VSS. VCC indicates +5v power supply and VSS indicates ground

signal.

Clock signals

There are 3 clock signals, i.e. X1, X2, CLK OUT.

 X1, X2 − A crystal (RC, LC N/W) is connected at these two pins and is used to set frequency of the internal

clock generator. This frequency is internally divided by 2.

 CLK OUT − This signal is used as the system clock for devices connected with the microprocessor.

Interrupts & externally initiated signals

Interrupts are the signals generated by external devices to request the microprocessor to perform a task. There are 5

interrupt signals, i.e. TRAP, RST 7.5, RST 6.5, RST 5.5, and INTR. We will discuss interrupts in detail in interrupts

section.

 INTA − It is an interrupt acknowledgment signal.

 RESET IN − This signal is used to reset the microprocessor by setting the program counter to zero.

 RESET OUT − This signal is used to reset all the connected devices when the microprocessor is reset.

8

 READY − This signal indicates that the device is ready to send or receive data. If READY is low, then the

CPU has to wait for READY to go high.

 HOLD − This signal indicates that another master is requesting the use of the address and data buses.

 HLDA (HOLD Acknowledge) − It indicates that the CPU has received the HOLD request and it will

relinquish the bus in the next clock cycle. HLDA is set to low after the HOLD signal is removed.

Serial I/O signals

There are 2 serial signals, i.e. SID and SOD and these signals are used for serial communication.

 SOD (Serial output data line) − The output SOD is set/reset as specified by the SIM instruction.

 SID (Serial input data line) − The data on this line is loaded into accumulator whenever a RIM instruction is

executed.

Now let us discuss the addressing modes in 8085 Microprocessor.

Addressing Modes in 8085

These are the instructions used to transfer the data from one register to another register, from the memory to the

register, and from the register to the memory without any alteration in the content. Addressing modes in 8085 is

classified into 5 groups −

Immediate addressing mode

In this mode, the 8/16-bit data is specified in the instruction itself as one of its operand. For example: MVI K, 20F:

means 20F is copied into register K.

Register addressing mode

In this mode, the data is copied from one register to another. For example: MOV K, B: means data in register B is

copied to register K.

Direct addressing mode

In this mode, the data is directly copied from the given address to the register. For example: LDB 5000K: means

the data at address 5000K is copied to register B.

Indirect addressing mode

In this mode, the data is transferred from one register to another by using the address pointed by the register. For

example: MOV K, B: means data is transferred from the memory address pointed by the register to the register K.

Implied addressing mode

This mode doesn’t require any operand; the data is specified by the opcode itself. For example: CMP.

Interrupts in 8085

Interrupts are the signals generated by the external devices to request the microprocessor to perform a task. There

are 5 interrupt signals, i.e. TRAP, RST 7.5, RST 6.5, RST 5.5, and INTR.

Interrupt are classified into following groups based on their parameter −

 Vector interrupt − In this type of interrupt, the interrupt address is known to the processor. For

example: RST7.5, RST6.5, RST5.5, TRAP.

 Non-Vector interrupt − In this type of interrupt, the interrupt address is not known to the processor so, the

interrupt address needs to be sent externally by the device to perform interrupts. For example: INTR.

 Maskable interrupt − In this type of interrupt, we can disable the interrupt by writing some instructions into

the program. For example: RST7.5, RST6.5, RST5.5.

9

 Non-Maskable interrupt − In this type of interrupt, we cannot disable the interrupt by writing some

instructions into the program. For example: TRAP.

 Software interrupt − In this type of interrupt, the programmer has to add the instructions into the program

to execute the interrupt. There are 8 software interrupts in 8085, i.e. RST0, RST1, RST2, RST3, RST4,

RST5, RST6, and RST7.

 Hardware interrupt − There are 5 interrupt pins in 8085 used as hardware interrupts, i.e. TRAP, RST7.5,

RST6.5, RST5.5, INTA.

Note − NTA is not an interrupt, it is used by the microprocessor for sending acknowledgement. TRAP has the

highest priority, then RST7.5 and so on.

Interrupt Service Routine (ISR)

A small program or a routine that when executed, services the corresponding interrupting source is called an ISR.

TRAP

It is a non-maskable interrupt, having the highest priority among all interrupts. Bydefault, it is enabled until it gets

acknowledged. In case of failure, it executes as ISR and sends the data to backup memory. This interrupt transfers

the control to the location 0024H.

RST7.5

It is a maskable interrupt, having the second highest priority among all interrupts. When this interrupt is executed,

the processor saves the content of the PC register into the stack and branches to 003CH address.

RST 6.5

It is a maskable interrupt, having the third highest priority among all interrupts. When this interrupt is executed, the

processor saves the content of the PC register into the stack and branches to 0034H address.

RST 5.5

It is a maskable interrupt. When this interrupt is executed, the processor saves the content of the PC register into the

stack and branches to 002CH address.

INTR

It is a maskable interrupt, having the lowest priority among all interrupts. It can be disabled by resetting the

microprocessor.

When INTR signal goes high, the following events can occur −

 The microprocessor checks the status of INTR signal during the execution of each instruction.

 When the INTR signal is high, then the microprocessor completes its current instruction and sends active low

interrupt acknowledge signal.

 When instructions are received, then the microprocessor saves the address of the next instruction on stack

and executes the received instruction.

10

Let us take a look at the programming of 8085 Microprocessor.

Instruction sets are instruction codes to perform some task. It is classified into five categories.

S.No. Instruction & Description

1

Control Instructions

Following is the table showing the list of Control instructions with their

meanings.

2

Logical Instructions

Following is the table showing the list of Logical instructions with their

meanings.

3

Branching Instructions

Following is the table showing the list of Branching instructions with their

meanings.

4

Arithmetic Instructions

Following is the table showing the list of Arithmetic instructions with their

meanings.

5

Data Transfer Instructions

Following is the table showing the list of Data-transfer instructions with

their meanings.

11

Programmable peripheral interface 8255

PPI 8255 is a general purpose programmable I/O device designed to interface the CPU with its outside world such as

ADC, DAC, keyboard etc. We can program it according to the given condition. It can be used with almost any

microprocessor.

It consists of three 8-bit bidirectional I/O ports i.e. PORT A, PORT B and PORT C. We can assign different ports as

input or output functions

It consists of 40 pins and operates in +5V regulated power supply. Port C is further divided into two 4-bit ports i.e.

port C lower and port C upper and port C can work in either BSR (bit set rest) mode or in mode 0 of input-output

mode of 8255. Port B can work in either mode 0 or in mode 1 of input-output mode. Port A can work either in

mode 0, mode 1 or mode 2 of input-output mode.

It has two control groups, control group A and control group B. Control group A consist of port A and port C

upper. Control group B consists of port C lower and port B.

Depending upon the value if CS’, A1 and A0 we can select different ports in different modes as input-output

function or BSR. This is done by writing a suitable word in control register (control word D0-D7).

CS’ A1 A0 Selection Address

12

CS’ A1 A0 Selection Address

0 0 0 PORT A 80 H

0 0 1 PORT B 81 H

0 1 0 PORT C 82 H

0 1 1 Control Register 83 H

1 X X No Selection X

Pin diagram –

 PA0 – PA7 – Pins of port A

 PB0 – PB7 – Pins of port B

 PC0 – PC7 – Pins of port C

 D0 – D7 – Data pins for the transfer of data

 RESET – Reset input

 RD’ – Read input

 WR’ – Write input

 CS’ – Chip select

 A1 and A0 – Address pins

Operating modes –

13

1. Bit set reset (BSR) mode –

If MSB of control word (D7) is 0, PPI works in BSR mode. In this mode only port C bits are used for set or

reset.

2. Input-Output mode –

3. If MSB of control word (D7) is 1, PPI works in input-output mode. This is further divided into three modes:

 Mode 0 –In this mode all the three ports (port A, B, C) can work as simple input function or simple output

function. In this mode there is no interrupt handling capacity.

 Mode 1 – Handshake I/O mode or strobbed I/O mode. In this mode either port A or port B can work as

simple input port or simple output port, and port C bits are used for handshake signals before actual data

transmission. It has interrupt handling capacity and input and output are latched.

Example: A CPU wants to transfer data to a printer. In this case since speed of processor is very fast as

compared to relatively slow printer, so before actual data transfer it will send handshake signals to the

printer for synchronization of the

speed of the CPU and the peripherals.

 Mode 2 – Bi-directional data bus mode. In this mode only port A works, and port B can work either in mode

0 or mode 1. 6 bits port C are used as handshake signals. It also has interrupt handling capacity.

14

Aim: Write 8085 assembly language program for addition of two 8-bit numbers

Program

Memory

address
Machine

Codes

Mnemonics Comments

8500 21 LXI H, 8000 H Address of first number in H-L

registerpair. 8501 00

8502 80

8503 7E MOVA,M Transfer first number in accumulator.

8504 23 INXH Increment content of H-L register pair

8505 66 ADDM Add first number and second number

8506 32 STA8003H Store sum in 8003 H

8507 03

8508 80

8509 76 HLT Halt

Aim-Write 8085 an assembly language program for subtraction of two 8-bit numbers.

Program

Memory

address
Machine

Codes

Mnemonics Comments

8500 21 LXI H, 8000 H Address of first number in H-L register

pair. 8501 00

8502 80

8503 7E MOVA,M Transfer first number in accumulator.

8504 23 INXH Increment content of H-L register pair

8505 66 SUBM Subtract first number and second number

Aim: To write an assembly language for multiplying two 8 bit numbers by using 8085 micro processor kit.

Program

Memory address Label Mnemonics Hex Code Comments

8500 MVI A, 03 3E
A = 00H

8501 03

8502 MOV E,A 5F E = A.

8503 MVI D, 00 16 Get the first numberin
DE register pair 8504 00

8505 LDA 8000 3A
Store the content of

memory location into A
8506 00

8507 80

8508 MOV C,A 4F Initialize counter

8509 LXI H, 0000 21

Result = 0 850A 00

850B 00

850C BACK DAD D 19 Result = Result + first
number

15

Aim: To write an assembly language for multiplying two 8 bit numbers by using 8085 micro processor kit.

Program

Memory address Label Mnemonics Hex Code Comments

8500 MVI A, 03 3E
A = 00H

8501 03

8502 MOV E,A 5F E = A.

8503 MVI D, 00 16 Get the first numberin

DE register pair 8504 00

8505 LDA 8000 3A
Store the content of

memory location into A
8506 00

8507 80

8508 MOV C,A 4F Initialize counter

8509 LXI H, 0000 21

Result = 0 850A 00

850B 00

850C BACK DAD D 19 Result = Result + first
number

Aim: To write an assembly language program for dividing two 8 bit numbers using microprocessor kit.

Program

Memoy

address
Label Mnemonics Hex Code Comments

8500 MVI C, 00 0E Initialize Quotient as
zero 8501 00

8502 LDA 8000 3A
Get the first number in

Accumulator
8503 00

8504 80

8505 MOV B,A 47 Copy the 1st data into

register B

Memoy

address
Label Mnemonics Hex Code Comments

8506 LDA 8001 3A Get the second number

in Accumulator 8507 01

8508 80

8509 CMP B B8 Compare the 2 values

850A JC LOO
P1

DA

Jump if dividend lesser

than divisor 850B 12

850C 85

850D LOOP2 SUB B 90 Subtract the 1st value

by 2ndvalue

16

850E INR C 0C Increment Quotient

850F JMP C3 Jump to Loop 1 till the

value of dividend

becomes zero

8510 0D

8511 85

8512 LOOP1 STA 8002 32

Store result 8513 02

8514 80

8515 MOV A,C 79 Move the value of

remainder to
accumulator

8516 STA 8003 32 Store the

 remainder

value inaccumulator

8517 03

8518 80

8519 HLT Stop execution

Aim: Write 8085 assembly language program for one’s complement of an 8-bit numbers

Program

Memory Address Hex Code Mnemonics Comments

8500 21 LXIH,8000H
Load address of number in H-L

register pair 8501 00

8502 80

8503 7E MOVA,M Move number into accumulator

8504 3F CMA Complement accumulator

8505 32 STA8050H

Store the result in 8050H 8506 50

8507 80

8508 76 HLT Stop Execution

Aim: Write 8085 assembly language program for two’s complement of an 8-bit numbers

Program

Memory Address Hex Code Mnemonics Comments

8500 21 LXIH,8000H
Load address of number in H-L

register pair 8501 00

8502 80

8503 7E MOVA,M Move number into accumulator

8504 3F CMA Complement accumulator

8505 C6 ADI 01 Add 01H with accumulator to

find two’s complement of

number
8506 01 01

8507 32 STA8050H

Store the result in 8050H 8508 50

8509 80

850A 76 HLT Stop Execution

17

Aim: To find the largest element in an array of size ‘n’ using 8085 Microprocessor.

Program

Memory
address

Label Mnemonics Hex Code Comments

8500 LDA 8000 3A

Load the number of values 8501 00

8502 80

8503 MOV C,A 79 Initialize counter

8504 XRA A AF Clear Accumulator

8505 LXI H, 8001 21

Set the pointer for array 8506 01

8507 80

8508 BACK CMP M BD Is number> maximum

8509 JNC SKIP D2 No, jump to SKIP

850A 0D

850B 85

850C MOV A,M 7E replace maximum

850D SKIP INX H 23 Increment pointer

850E DCR C 0D Decrement counter by one

850F JNZ BACK C2

Go to next iteration 8510 08

8511 85

Aim-Write a program to control the traffic light system using 8085 & 8255 ppi.

Program

Memory

Address

Label Machine

Code

Mnemonics Operands Comments

2000 3E 80 MVI A,80H Init PA &PB as output

2002 D3 03 OUT 03H

2004 3E 11 MVI A,11H Stop all four ends

2006 D3 00 OUT 00H

2008 D3 02 OUT 02H

200A CD 50 20 CALL DELAY1

200D LOOP 3E 44 MVI A,44H GO STR signal of

North & South,

STOP signal of East

&West
200F OUT 00H

2011 CALL DELAY1

2014 MVI A,22H Alert signal for traffic

2016 OUT 00H

2018 CALL DELAY2

201B MVI A,99H GO LEFT signal of
North & South

18

201D OUT 00H

201F CALL DELAY1

2022 MVI A,22H Alert signal for traffic

2024 OUT 00H

2026 CALL DELAY2

2029 MVI A,11H STOP signal of North &

South

202B OUT 00H

202D MVI A,44H GO STR signal of East

& West

202F OUT 02H

2031 CALL DELAY1

2034 MVI A,22H Alert signal for traffic

2036 OUT 02H

2038 CALL DELAY2

Memory

Address

Label Machine Code Mnemonics Operands Comments

203B MVI A,99H GO Left signal of East &
West

203D OUT 02H

203F CALL DELAY1

2042 MVI A,22H Alert signal for traffic

2044 OUT 02H

2046 CALL DELAY2

2049 MVI A,11H STOP signal of East
&West

204B OUT 02H

204D JMP LOOP Jump to loop

2050 DELAY1: MVI B,25H Delay of 10 sec.

2052 LP3: MVI C,0FFH

2054 LP2: MVI D, 0FFH

2056 LP1: DCR D

2057 JNZ LP1

205A DCR C

205B JNZ LP2

205E DCR B

205F JNZ LP3

2062 RET

2063 DELAY2: MVI B,05H Delay of 2 sec

2065 LP6: MVI C,0FFH

2067 LP5: MVI D,0FFH

2069 LP4: DCR D

206A JNZ LP4

206D DCR C

206E JNZ LP5

2071 DCR B

2072 JNZ LP6

2075 RET

19

Aim: Program for Decimal Addition of Two 8-Bit Numbers and Sum is 16 Bit.

Program

Memory

Address

Machine

Codes

(Data)

Labels

Mnemonics

Operands

Comments

8000 21

LXI H, 8501 H
Address of first number
in H-L register pair.

8001 01
 Lower byte data

isstored
in memory

8002 85
 Higher byte data is

stored
in memory

8003 0E

MVI C,00H
Sum of msb’s& register
value in 00h

8004 00

8005 7E

MOV A,M
Transfer first number in
accumulator.

8006 23

INX H
Increment content of
H-L
register pair

8007 86

ADD M
Add first number
 and
second number

8008 27 DAA

8009 D2

JNC 800CH
Jump if no carry
 to
800Ch location

800A 0C
 Lower byte data

isstored
in memory

800B 80
 Higher byte data is

stored
in memory

800C 0C INR C Increment register C

800D 32 AHEAD STA 8503H
Data of
accumulatoris
stored into
8503haddress

800E 03
 Lower byte data

isstored
in memory

800F 85
 Higher byte data is

stored
in memory

8010 79 MOV A,C MSB’S of sum in A

20

8011

32

STA

8504H

MSB’S of sum in A is

transferred to

 8504h

location

8012 04
 Lower byte data

isstored
in memory

8013 85
 Higher byte data is

stored
in memory

 EF RST.5 Terminate program

Aim: Program for Decimal Subtraction of Two 8-Bit Numbers

Program

Memory

Address

Machine

Codes (Data)

Labels

Mnemonics

Operands

Comments

8000 21

LXI H, 8501 H
Address of first number
in H-L register pair.

8001 01
 Lower byte data isstored

in memory

8002 85
 Higher byte data is stored

in memory

8003 3E

MVI A,99H
Copy immediate data 99
in A

8004 99

8005 96 SUB M 9’s complement

8006 3C

INR A
Increment content of A
register

8007 2B

DCX H
Decrement content of H-
L register pair

8008

86

ADD

M

Addition of
complemented data and

the second number

8009 27

DAA
 Decimal Accumulator

Adjust

800A 32

STA 8503H
Data of accumulatoris
stored into 8503haddress

800B 03

800C 85

800D EF RST.5 Terminate program

