chapter 11 Introduction to Switch II Dt-11/12/19
Gear il
$\{$ SGD $\}$

* Switch hear:- The apparatus use for switching, controlling \& protecting the electrical cot \& equipment is known as switch gear.
\rightarrow It if assencially. consist of switching and protecting device. suck as switch q, theses, ct breaker \& relays etc.
\rightarrow Daring normal operating cold" suite gear permits to sjw on or oft the electrical equipment. \therefore In case of fault cond'l the sw gear detect the boult \& disconnect the unhealthy section from the system.
\Rightarrow Essential features of switch gear:-
The essential features of s/w gear are:-

1. Complete * reliability:-

The requirment of sic gear is more \& more important beck of the interconnection \& increasing opacity of generating station:
\rightarrow sw gear if are to the power system for improve reliability. if the fault occurred on an any part of is tate power system they must operate to isolate power the ticalle section from the normal section.
2. Absolutely certain discrimination:boult occur on any section of power system the s/w gear must be the
able to discrimination beth the vaulty section \& the healthy section.
\rightarrow It will ensure continuity of power supply.
3. Quick Operation:-

When boult occurs of any part of the power system the sw gear mask operates quickly so that no damage is done ta. generator, tit \& other equipment.
\rightarrow If the boult is not clear, by sw gear quickly it is spread into healthy party \& thus complite shut - down of the system occurs.
4. Provision for manual controls:-

A sw gear must have provision bor manual control: In case the electrical (. Electronics) control anils the necessary ope. can be carried out through manual
5. Control.

There for Instrument: must be provision for instrument. which may be required.

* Switch Gear Equipment:-

The s/w gear cover all the apparatus \& equipments employed for switching, protecting, controlling the electrical power system.
$y \mathrm{It}$ system includes s / w, buses, akA breaker, isolator relay, potential $H G(P T), C T \&$ lightning arrestor etc.
\Rightarrow Switch: $5 / \omega$ is a most simplest device to on or oft the electrical cit \& equipments.
$y I t$. if design to operate manually and cants protect to electriad system for any fault.
\Rightarrow The. s/w., are use for low voltage application
$-y$ The s/w. may be clasitied into the following category
(2) Act $5 / \omega$
(ii) $0 i l$ sha
i) (a)Air break switch:-

It is an air slow \& it is design \rightarrow to open a eke cinder load.
I In this sw the special arcing horns are provided the open the s / ω.
\rightarrow Arcing horns are piece of metal bet. which arc if form during opening operation
y As the sw open this horns are spread farther and farther so the are if inter rupted. This sw generally use out-doory, Cb) isolator and disconnecting switch,
\Rightarrow

This sw is design io open a ckt under no load. its main purpose is th Emulate one portion of the ct from the other.
\rightarrow This slue are generally use on both side of ckt breaker in order ti repaire \& replacement ar at breaker.
20) 021 switch:-

The contacts of this sows are open under oil fie. tit oil.
\rightarrow This. suritehes are used for ck of HV \& - large current carving capacity.

* Fuse: (taut condition)

Dt-12/12/19
$\rightarrow \overline{\bar{A} \text { tue is a short piece of wire is melts }}$ when excessive currents flow through it.
\rightarrow It is inserted in series with the ct.
\rightarrow Under normal operating condition the burse element is at a temperature below it p melting point, so it carries normal load current without over heating.
\rightarrow When a short ct overload occur the current through the fuse element if increase, this rises the temperature of the fuse element melt f

* Circuit breaker:-
\rightarrow A ckt breaker is an equipment which can open or close a ckt under all condition that is no load, full load of fault cavite) condition.
\rightarrow It is design to operate manually under
\rightarrow normal condition \& automatically. under fault: condition.
y The circuit breaker consist of 2types of contact:
<1\} Moving Contact
5
<2y Fixed contact
$-y$ Under normal operation condin the contact co 1 Co remain closed and it carries the normal ball load current, in this case the eMF Bt the seconder and of the $C T$ is insufficient to operate the trip coil of the breaker. when a fault occur over current in the C_{T} primary and increase. The enc in the secondary cond these energies the trip coil of the breaker \& the moving contact are pulled down the the opening of contact \& hence the ckt.

* Relay:-

A relay is device which detect the boult \& supply information to the Cleat breaker. for ct intrruption.
r It can be derided into 3 parts; i) The primary wand of the CT which if if: connected in series, with the ckt. riv The second ct si the secondagunal of the $C T$ which is conn to the relay operating coil

Miry The gro che is the tripping ckte which consist of a source to supply the trip vil.

* Busbar Arrangement:-

When a no. of generator or feeders operating at a same voltage and directly conn electrically, busbars are used as the common electrical component.
\rightarrow The busbary are copper rods or thin tubes, which are operated at constant voltage.
\rightarrow There are some imp. buster arrangement used in power station, these are in
i') Single busbar system in inenerator
\Rightarrow The single busker system has the simplest design.
\rightarrow and is use for the power Bursar station.
\rightarrow It is also used in small outdoor station having bee
no. of out going \& incoming $C B$
feeders \& generators.
-1 Here the generators, out- \checkmark beceder -going lines and $t 16$ are connected to the single busbar.

- Each generator \& teeter if controlled by a colet breaker. The istalabor permits to isolate the generator \& seeder β ckt breaker. from the bulbar for maintainance.
\Rightarrow Advantage:-
y This type of arrangement ry are low initial coste, less maintaince \& simple operation.
\Rightarrow Disadvantage:-
\rightarrow The beesbar can't be clean, repair or tested without de-energising the whole system.
lift a fault occur in a basbar there is complite intrroution of the supply
iii Single busbar system with Sectionaligation:-

tin large generating station where wee systemeral units are installed, the single busbar system with sectionalization bus is used, so that the tact on any section of the busbar not cause complite short down.
\rightarrow Here the busbar derided into 2 section \& conns
by a clot breaker \& Isolator.
if Advantage: - -cur on any section of the busbar that can be isdated without abbecting the supply to the other section.
${ }^{a}=1$ This permits the use of $B B$. of lower capacity in the feeder.
win Repair \& maintainance ot any section of the busbar can be carried at by derenergized other section.

Main busbar <nosy Duplicate Bubbar System:
spare
Busbar

\rightarrow The system consist of 2 busbar;
(i) Main Bulbar
iii) Spare (add) "
\rightarrow Each generator $\&$ feeder cont to either busbar with the help of bus coupler, which is consist of CB. \& isolators
\Rightarrow Advantage:-
\rightarrow \$8 repair \& maintainanes to be carried on the main busbar. The supply, need not be introupt as the entainse load can be transtered the the spare bulbar.
${ }^{4}$ The testing of seeder \& $C B$ can be done big putting them on the spare bustler.
-4) 96 a balt occur in on bubbar the continently of the supply to the clit con be maintain gig transferring it to the other busbar.
*) Switch Gear Accomblation:-
Depending capon the voltage to be handle the sw gear may be classified into 2 type: (a) out dar type
(b) Indoor
colour - door:-
7 For the voltage beyond $66 K V$ S/w gear equipments are installed outdoor.
\rightarrow gt is because tor such voltage (HV) the dearacce beth conductors \& the space required for $5 / \omega, C B, f t \& \&$ other equipment becomes so large.
(b) In - door type-

The voltage below 66 KV sw gear if generally installed indoor.

* Short Circuit :-
\rightarrow When ever a fault occurs on a n/w such that a large current flows in 6 ne or more phases a short ckt is to be occur.
\rightarrow When a short ct occurs a heavy current called short ct current flows through the circuit.
* Circuit. ot short che:-

A short ckt in a power system 2 is the $^{\circ}$ result of some kind of abrormat condition in the system.
it may be cause due to external crinternal effect.
(a) Internal effect:- The internal effects are caused by break-down of equipment or transmission like, deterioration of insulation en a generator, t / t et C.
\rightarrow Such trouble may be due to ageing of insulation inadiquite. design or imp proper installation.
(b) External effect:- The external effect coursing short ct includes insulation failure due to lightning search over-loady
of equipment and mech. damage by public.

* Effect of short ckt:- When a short ckt occurs the current in the system increase to an abnormal high value V dell to creases to a low value.
\rightarrow The heavy current due to the short che causes excessive heating which may result in tire. Some times the shoot ckt cause of damage to the system.
o Fault in a power system:-
\rightarrow A Fault occur when a 2 or more conductor. that normally operate of a Potentis deference come. in contact with each other. \rightarrow Dhroerence boult in a 3ϕ system can be clessitied into 2 main categories,
(1) Symentrical fault
(2) Unsymentrical "

L1. Symentrical boult:-
The fault which gives rise to the symentrical boult current (ire equal talk arrows with 120° displacement) is called symentrical.
\rightarrow the most common example of this system is when all the 3 conductor of the 3ϕ line are brought together symultarivaly into a short ct condition.
(2) Un-Symentrical bacall:-

Whish give rise to unsymentrical current (ie. unequal line current with unequal displacement) are calked Unsymentrial fault.

Ch-2 $\quad \because 10$ Symmetrical Fault 14 Dts- $13 / 12 / 19$
\rightarrow 得

* Symmetrical fault :-
\rightarrow The fault which gives rise to the symmentrical fault current ($i \cdot e$. equal fault armies) with 120° displacement) is called symmetrical fault.
$\Rightarrow E x:-3 \phi$ tacet.
* Limitation of fault current:-
\# Excessive heating
\rightarrow Resulting fire or explo
\rightarrow Reduction in voltage causes mis-operation of rotating a machine.
- POwer outage if generator protection system operates.
* Percentage Reactance:

The reactance of a generator, $t 1 t$, reactor is usually expressed in percentage reactance.
-1) The percentage reactance of a ct if defined as the total voltage drop in the echt when the total load current is flowing.

$$
\% x=\frac{I x}{V} \times 100
$$

-4 where, $I \rightarrow$ full load current
$V \rightarrow$ Phase voltage
$x-y$ Reactance in ohm per phase

* Percentage Resistance:-

The resistance of a generator, $t / 6$, reactor is casually expressed in \% resistance.
I) The $\%$ resistance of a ckt if defined as
the total V voltage drop in the ct when the tullistive toad current is toeing.

$$
\% R=\frac{I R}{V} \times 100
$$

* Percentage Impedance:-

It is the sum effect of $\%$ of resistance and $\%$ reackare.

* $\% x$:-

$$
\begin{aligned}
& \% x=\frac{I x}{V} \times 100 \\
& \Rightarrow \quad x=\frac{\% \times V}{I \times 100} \\
& \Rightarrow x=\frac{\% x \times v \times v}{I \times 100 \times v} \\
& \Rightarrow x=\frac{\% \times \times \frac{V}{1000} \times \frac{V}{1000} \times 1000 \times 1000}{I \times 100 \times 2} \\
& \Rightarrow x=\frac{\% \times \times V \times K V \times 1000 \quad \frac{V}{1000} \times K V}{I \times 100 \times K V} \\
& \Rightarrow x=\frac{\% x \times k v)^{2} \times 1000}{N V A \times 100} \\
& =y \quad x=\frac{\% x(K \mid 1)^{2} \times 10}{K \cdot V A} \\
& \Rightarrow \% x=\frac{x \times K V A}{10 \times(\mathrm{KV})^{2}}
\end{aligned}
$$

* Base KVA:-

The $\% x$ of differ m / c depends upon the kV/h ratings.
of generally the various equipment use in th
power system have differ KVA rating, therefore it if necessary to find the $\% \gamma_{7}$ of all the elements on a common $K v_{A}$ rating. These common KVA rating. Is know
nipas Base KVA. Base KVA
The $\% x$ at base $K V A=\frac{\text { Bated } K V A}{\text { Rat }} \times \%$ rated at

* Short ct KVA:-:

$$
\text { S.C. } k V A=\text { Base } k V A \times \frac{100}{\% x}
$$

\rightarrow Short ct worvent $\left(I_{x}\right)=\frac{v}{x}$

$$
\begin{aligned}
& \Rightarrow I_{S C}=\frac{X \times I \times 100}{\% \times \times 2} \quad\left[\because x=\frac{\% \times \times v}{100 I}\right. \\
& \Rightarrow I_{S C}=\frac{I \times 100}{\% x}
\end{aligned}
$$

\rightarrow We know,

$$
\text { know, kt } k V A=\frac{3 V I_{s c}}{1000}
$$

- Put the value of ISC \& we get;

$$
\begin{aligned}
&=\frac{3 \times V \times I \times 100}{1000 \times \% x} \\
& \text { S.C. } K V A=\text { Base KVA } \times \frac{100}{\% x}
\end{aligned}
$$

* Steps for symentriap tract Calculate on:-
\rightarrow Draw the single line diagram indicated all rated quantities.
1 . Choose a convieriert base KVA \& convert all $\% x$ to this base value.
-1) Draw the reactance diagram using the new reactance obtcinal \& bind the to rd $\% x_{1}$
-1) Find the fill load current corresponding to the bull load bass. KVA.
4 Find the short cit current (Iss) by using the formula; $I_{s c}=\frac{I \times 100}{1 / x}$
7 Find the S.C.KVA by cesing the formula ie. \quad SiC $K V A=$ Base $K V A \times \frac{100}{\% x}$
Q) The figure shows of $a 3 \phi$ system;

Find I sc that will flow into a complete. 3ϕ ckt ate fault (F).
Base $K \gamma A=20,000$

\rightarrow We know,

$$
\begin{aligned}
\% & \begin{aligned}
\mathrm{B} & =\frac{20,000}{20,000} \times 50 \% \\
& =5-0 \%
\end{aligned}
\end{aligned}
$$

7 Total of $x=5$ rom\% $/ 140 \%$

$$
=\frac{50 \times 40}{50+40}=22.22
$$

$$
\Rightarrow I=\frac{\operatorname{Base} K V A}{\sqrt{3} \times V}
$$

$$
\Rightarrow I=\frac{20,000 \times 10^{3}}{\sqrt{3} \times 12000}=962.25 \text { - Amp. }
$$

$$
\begin{aligned}
& \Rightarrow \text { tor } \% \text { :- base } K V A=\frac{\text { Base } K V A}{\text { Rated } K V A} \times x \text { at raked } \\
& =\frac{20,000}{15000} \times 30 \% \\
& =40 \% \\
& \Rightarrow \text { For }^{\prime} B^{\prime} \text { :- }
\end{aligned}
$$

1) Shorf ckt current $\left(I_{s c}\right)=\frac{I \times 100}{x \%}$

$$
\Rightarrow I_{S C}=\frac{962.25 \times 10^{\circ}}{22.22}=4330.5-\mathrm{Ang}
$$

\rightarrow Shoor ckt $K V A=$ Base $K V A \times \frac{100}{1 \cdot x}$

$$
\begin{aligned}
& =20,000 \times \frac{1001}{22.22} \\
& =90009.00
\end{aligned}
$$

19 Assume;
Base $K V A=10,000$
Fon ' A ' Alternvers.
新示

$$
\begin{aligned}
& =\frac{2 \pi}{70050} \times 30 \% \\
& =20 \%
\end{aligned}
$$

for ' B ' ahber

$$
\begin{aligned}
& =25 \%
\end{aligned}
$$

tota $\% x$

$$
\frac{20 \times 25}{20+25}=\frac{300 \%}{45}=11.11 \%
$$

$$
\begin{aligned}
& \Rightarrow \quad I=\frac{\text { Basck.rax }}{\sqrt{3} \times . V}=\frac{10000 \times 10^{3}}{\sqrt{3} \times 12 \times 10^{3}} \\
& =481.125 \\
& \text { S.C } \begin{aligned}
D=\frac{100}{\% \times X} & =481.125 \times \frac{100}{11.11} \\
& =4330 .
\end{aligned} \\
& \mathrm{S} . \mathrm{C} \mathrm{KVar}=\text { Brse } \mathrm{KVA} \times \frac{100}{1 \%}=4330.5 \mathrm{AmP} \\
& =10,000 \times \frac{100}{11.11} \\
& =90009
\end{aligned}
$$

4) A 3ϕ transm line operalegate 10 kv \& having a R of $1 \Omega \& x$ of 4Ω is conne to the generating stalion bubbar throegh 5 MVA step-up $t / 6$, having a x of 5%. The bubbant are supplied by a $10 M M V A$ alterm having 10% reactance. Calculate the Sic. KVA bed to the symentrical. betn phases it of occurs (i) At the load of other
trangmission line.
iu) At the heigh roltage hermineal of the $t / 6$.

$$
\begin{aligned}
V=10 \mathrm{kV} \quad 5 \mathrm{MV} / \mathrm{A} & =5 \times 106 \mathrm{VA} \\
& =5,000,000 \\
& =5000 \mathrm{kVA} \\
10 \mathrm{VV} / \mathrm{VA} & =10,000 \mathrm{kV}
\end{aligned}
$$

we know,

$$
\begin{aligned}
\rightarrow \% x & =\frac{x \times K V A}{10 \times(K V)^{2}} \\
& =\frac{4 \times 10,000}{10 \times(10)^{2}} \\
& =\frac{40 \%}{10 \times(k V)^{2}} \\
& =\frac{1 \times 10,000}{10 \times(10)^{2}}=10 \% \\
\Rightarrow R & =\frac{R \times K V A}{\text { Base }}
\end{aligned}
$$

Base $K V A Z=10 \times 10^{3} \mathrm{KV} / \mathrm{A}$
Y For allernator:-

ب. Arr transformer. 10%

$$
\begin{aligned}
\% \text { at base } K V A & =\frac{x^{2} \times \times 0^{3}}{x-\times 72^{3}} \times 5 \% \\
& =10 \%
\end{aligned}
$$

- Total resistance $(\% \cdot R)=10 \%$

$$
\text { y } \% x=10 \%+10 \%+40 \%
$$

$$
\begin{aligned}
& \begin{aligned}
\text { Percentage }
\end{aligned} \\
& \Rightarrow \begin{aligned}
\text { Impedance }(y) & =\sqrt{(10)^{2}+(60)^{2}} \\
& =60.82 \%
\end{aligned}
\end{aligned}
$$

$$
\Rightarrow \text { current }(D)=\frac{P}{\sqrt{3} \times V}
$$

$$
=\frac{10 \times 10^{3}}{\sqrt{3} \times 10}=577.35 \mathrm{Amp}
$$

$$
\begin{aligned}
& \% x \text { at base } K V A=\frac{\text { Base } k V A}{\text { Rated } K V A} X \% x \text { at rated } \\
& =\frac{10 \times 10^{3}}{10 \times 10^{3}} \times 10 \%
\end{aligned}
$$

\rightarrow Short cut current $\left(I_{s c}\right)=\frac{I \times 100}{Z^{1} \%}$

$$
\begin{aligned}
& =\frac{5-77.35 \times 100}{60.82} \\
& =949.276 \mathrm{Amp}
\end{aligned}
$$

$$
\begin{aligned}
& =949.276 \mathrm{Amp} \\
\rightarrow \text { Short ckt KVA } & =\text { Base } \mathrm{kVA} \times \frac{100}{\% 7} \\
& =10,000 \times \frac{100}{60.86} \\
& =16441.9
\end{aligned}
$$

$2 x$

$$
\begin{aligned}
& \text { us } \% x \text { total }=10 \% \times 10 \%=20 \% \\
& \begin{aligned}
I_{s c} & =\frac{I \times 100}{x \%} \\
& =\frac{577.35 \times 100}{20} \\
& =2886.75 \text { Amp } \\
\Rightarrow S . C . K V A & =10,000 \times \frac{100}{Y x} \\
& =10,000 \times \frac{100}{20} \\
& =5-0,000
\end{aligned}
\end{aligned}
$$

6) A plant capacity of a 3ϕ gemeratingstation consist of two $10, b 00 \mathrm{KVA}$ generators reactance 12% each \& bite $5,000 \mathrm{KVM}$ general. of reactance 18%. The generatropate conn te tie station bulbar from which load is taken through throe. $5,000 \mathrm{kVA}$ step up th each. having o X of 5%. Determine the maxim boult MVA which the $C B$
(i) low voltage side

$$
V=11 k v
$$

(i) High voltage " of the Hos

Base $K V A=10,000$ \rightarrow For ' A ' alternator;
\Rightarrow if x out Base $k V A=$ $\frac{10,000}{10,000} \times 12 \%$

$$
=12 \%
$$

For ' B^{\prime} allermatro;

$$
\% x \text { at Base } K V A=\frac{10,000}{10,100} \times 12 \%=121 .
$$

For (C) alternator;

$$
\% x \text { at Base } k V A=\frac{10,000}{5,000} \times 18 \%=36 \% \text {. }
$$

\rightarrow For transtormer;

$$
\begin{aligned}
& \text { or transformer; } \\
& \% x \text { ot Base } K V A=\frac{2}{5,800} \times 5 \%=10 \%
\end{aligned}
$$

$12 H 112 \% .1136 \%$

$$
\frac{12 \times 12}{12+12}=\frac{144}{24}=6 \%
$$

$$
\operatorname{Herexcal}_{\rightarrow T i c}^{6+36}=\frac{616}{42}=5.14 \%
$$

\rightarrow lofal
recictancets $5.14+10^{\circ}=15.14$
-y For low voltage side

Scanned with CamScanner

$$
\begin{aligned}
\rightarrow I= & \frac{10,000 \times 10^{3}}{\sqrt{3} \times 11 \times 10^{3}}=524.86 \\
\rightarrow I_{S C} & =\frac{524.86 \times 100}{15.14}=9466.7 \mathrm{Amp} \\
\rightarrow \text { SAC. } k V A & =10,000 \times \frac{100}{15.14} \\
& =66050.19 \mathrm{kVA}
\end{aligned}
$$

For low voltage side $\Rightarrow 10,000 \times 100$

$$
\begin{aligned}
& =19455-2.5-2 \\
& =194.5 \mathrm{M} 7 \mathrm{AA}
\end{aligned}
$$

For high voltag side $=G C O S M N A$ $\therefore 1$

C:
$Q+$
A $10 \mathrm{NVA}, 6.6 \mathrm{KY} 3 \phi \mathrm{Y}$ - conn^{c} alternator having X of 20% is conn ${ }^{c}$ through a SNIVA 6.6 kV , 33 KV the of $10 \% x$, to a transmission line having a $R \& X$ of per conductor per km of $0.2 \Omega \& 1 \Omega$ rapectively. A sikH along the ling, a s.e. occurs bet the 3 conductory, find the So. current.

For total $50 \mathrm{kM}=y 0.2 \times 5^{\circ}=10 \Omega=R$.

$$
X=1 X 5 \gamma=50 \Omega
$$

$\min _{\text {(B) }} 53 x^{3} \times 10^{\circ} \%$
\rightarrow For th,
-y Assume,

$$
\text { Base KVA }=10,000 \mathrm{kVA}
$$

(A) $\% x$ at Base KVA $=\frac{10,000}{10,000} \times 20 \%=20 \%$
(B), x at Base kVA $=\frac{10,0020}{5,000} \times 10 \%=20 \%$
the know,

$$
\begin{aligned}
& \Rightarrow \% x=\frac{x \times k V A \text { at Base }}{10 \times(k V)^{2}} \\
& \% x=\frac{50 \times 10,000}{10 \times(33)^{2}}=45.9 \% \\
& \Rightarrow R \%=\frac{R \times K V A}{10 \times(\mathrm{KV})^{2}}=\frac{10 \times 10,000}{10 \times 33^{2}} . \\
& =9.18 \%
\end{aligned}
$$

$$
\begin{aligned}
\text { \%. x total } & =20+20+48.9=85.9 \\
\text { y } \% \cdot 7 & =\sqrt{.(R)^{2}+(1 x)^{2}} \\
& =\sqrt{(9.18)^{2}+(85.9)^{2}} \\
& =86.369 \%=86.37 \% \\
\text { y current }(I) & =\frac{P}{\sqrt{3} \times V} \\
& =\frac{10.000}{\sqrt{3} \times 6.6}=874.77 \mathrm{~A} .
\end{aligned}
$$

4 Shoot che current $\left(I_{s c}\right)=\frac{I \times 100}{Z \%}$

$$
\Rightarrow I_{s c}=\frac{874.77 \times 100}{86.37 \%}=1012.69 \mathrm{~A}
$$

-y Short. ckt $K V A=$ Base $K V A X \frac{100}{\% .7}$

$$
\begin{aligned}
& =10,000 \times \frac{100}{86.374} \\
& =11.578 .1 \mathrm{KVA} \\
& =11.578 \mathrm{MVA}
\end{aligned}
$$

* Reactor control of sc:-
\rightarrow The $I_{s c}$ can be limited by increasing the total system impedance i, but practically a power system has large reactance as compare ta its resistance so, generally aoblition of reactance are pretrial over addition of resistance.
\rightarrow The reactors which are used for limiting the $I_{s c}$ of a power system are known .as current limiting reactor or series reactor. \rightarrow.
* Advantage:-
\rightarrow The reactor limits the blow obs sic current (Ifc) \& thus protect the equipment boom over heating as well as from tailerre.
\rightarrow There arepermity the installation of ckt breaker y of lower rating.
\rightarrow Disadvantage :-
\rightarrow Additional :\% x increase the total X or z of the system.
\rightarrow This increase the reactive voltage drop which decrease the P.F. $(\cos \phi)$.
\rightarrow The voltage regulation is ala port (less).
\rightarrow For this reason the reactors are generaig used in large interconnected system, batik not preferable for small system.
* Location of Reactor:-

The Iss limiting reactor may be conn in series with:-

1. Generators
2. Feeder
3. Bushar (Generator \& feeder common point)

* Generator Reader:-

When the reactors are conn ${ }^{c}$ in series with v generators they are know as generator react or.
\rightarrow Here the x of reactor are considered to be a part of $\% X$ of the generator.

+ It protect a generator against $I_{S C}$ in case of fault.
\Rightarrow Advantage: \rightarrow It is simple.
\Rightarrow Disadvantage:-
y There is a constant voltag drop \& power loss in the reactor during normal operation. - It a busbar or breeder twill occurs closed to the basbar, the voltage at the busbar weill be reduce to a low value there by causing. the generator to tall out ot step. t If a fault occurs on any feeder the continuity of power supply. Is to be effected.
f
* Feeder Reactor:-
\rightarrow When the reactors
 conn in in series with beery ${ }^{3}$ are known as feeder reactor: In this case larger capacity reactors or more no. of reactors are used as most of the short che occurs on tedder.
\Rightarrow Advantage:-
\rightarrow If a fault ocker on any breeder the voltage drop in its reactor will not effect the besbar voltage.
The fault on any beecher will not ebteat other feeders.
\Rightarrow Dis advantage:-
4 There is a constant voltage drop \& power lossin the reactor during normal operation.
\rightarrow If a s.g. occurs at busbar no protection is provided to the generator.

7 \$ the no. of generator if increase the size of feeder reactor will have to be increase to keep the Sic. current (Iss) with in the raking of the feeder.

* Busbar Reactor:- (1) Ring system
\rightarrow It is 2 types:- (2) Tiebar system.
${ }^{1}$ Ring System:-
Hor this system busbaris
derided into no. ot sections
\& these sections are connected \downarrow Feeders \downarrow
through reactor as shown in fig..
TGenerally one beater is ted from one generator only. normal operating cond" each generator will supply its sn section of the load, the result in low power loss \& voltage drop in the reactor.
\Rightarrow Advantage :
\rightarrow It a fault : curt on any beeder, inly one general. which beeps the fault current while the current b. Feeds . from other generator is small ale fa the preseriff of reactor. Therebrove only that section of the bushar is effected \& the other section will able to continue in normal operation.
(2) Tiebar System:-
\rightarrow In this system twa reactors are conn in Series with in the indirisual bus section y The outgoing bedews are taken

$680 \mathrm{~m}^{m}$ reactor side of generating, unity \& the reactors are conn in beth indiviscal bus. section. l it common tlebar system.
- Advantage:-
\rightarrow The system has adrankage of casing smaller - Decadiankege:- capacitive reactor.
\rightarrow This system if required additional busbar tie tiebar.
Q3) The section buesbar. $A \& B$ are linked by a
 busbar reactor rated.
at Stork YA with 10% reactance. On busbar At there are 2 generator each of $10,000 \mathrm{kVF}$ with $10 \% \mathrm{obj}$ and on be 2 generator each of $8,000 \mathrm{kNA}$ with $12 \% . x$, bind the steady. MVA (S.C.) bed into a dead s.c. beth all phase on B cuith buber rector in the ckt.
Assure; Base $K V A=15,000 \mathrm{KVA}$

$$
\begin{aligned}
& \text { Assure, Base } k V A=15,000 \mathrm{KVA} \\
& -4 \% \times x \text { at Base } k V A=\frac{3}{10,000} \times 12 \%=15 \% \\
& \text { ("A) }
\end{aligned}
$$

$\rightarrow \% x$ at Base $k V A=\frac{15,000}{8,000} \times 12 \%=22.5 \%$
$-1 \% x$ at base $K V A=\frac{k_{5}^{3} 000}{\mathbb{N}_{2}^{0 D e}} \times 10 \%=30 \%$
(Reactor)
(Reactor) ($1 s^{5} 1 / 15$)

$$
\begin{aligned}
& \frac{15 \times 15}{15715}=7.5 \\
& \frac{22.5 \times 22.5}{22.5 .+22.5}=(22.5 \times 22.5) \\
& 30+71.25 \\
& 37.51111 .25 \\
& \frac{37.5 \times 11.25}{37.5+11.25}=8.5 .5
\end{aligned}
$$

$$
\begin{aligned}
\text { Soc. } K V A= & \text { Base KVA } \times \frac{100}{\% x} \\
= & 15,000 \times \frac{100}{8 . \cos }=173410.4 \mathrm{KVA} \\
& =173.41 \mathrm{MV} / \mathrm{A}
\end{aligned}
$$

A generating station has 3 section busbar conns with a fiebar through 6% reactors rated at $5,000 \mathrm{KVA}$. Each generator is $5,080 \mathrm{kVA}$ curt 12% reactance.. Find the total S.C MMIA when, S.C. occurs beth the lines on one of the section of the busbar (1) With reactor.
reAssume;
Base $K V A=5,000$
Hes x fro generator at

$$
\begin{aligned}
\text { Base } k y A & =\frac{5 s 000}{50000} \times 12 \% \\
& =12 \%
\end{aligned}
$$

(2) Without"

TO K at reactance base $K V A=\frac{5 \% 000}{5,000} \times 6 \%=6 \%$

$$
\begin{aligned}
& 12+6 \\
= & 1.8 \% \\
= & 181118 \\
= & \frac{18 \times 18}{18+1.1}=9 \% \\
& 9+6=15 \%
\end{aligned}
$$

$\therefore 15 \% / /^{\prime} 12 \%$

$$
\frac{15 \times 12}{15+12}=6.66 \%
$$

$$
\text { S.C. at Base } \begin{aligned}
K V A=\frac{5,000 \times 900}{6.66} & =75075 \mathrm{KVA} \\
& =75 \mathrm{MVA}
\end{aligned}
$$

Q1) Assume,
\rightarrow Base $K V A=5,000 \mathrm{KVA}$

$$
\begin{aligned}
& \rightarrow \text { Base } K V A=5,000 \\
& \text { ty\% at Base } k V A=\frac{V, 600}{T 5002} \times 30 \% \\
& \text { (to oo A) }=10 \%
\end{aligned}
$$

$$
=10 \%
$$

$$
\begin{aligned}
&=10 \% \\
& \quad-1 \% x \text { at Base } K V A=\frac{5,600}{2000} \times 50 \%=12.5 \% \\
&(\operatorname{tor} B) \\
& 10 \% . H 112.5 \% \\
& \frac{10 \times 12.5}{16+1.2 .5}=5.55 \%
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \quad I=\frac{\text { Base } K V A}{\sqrt{3} \times V}=\frac{S^{5}, 006 \times 10^{3}}{\sqrt{3} \times 12000}=240.56 \mathrm{Amp} \\
& -y \quad I_{S C}=\frac{I \times 100}{x \%}=\frac{240.56 \times 100}{S .5 \sigma^{2}}=4334 \mathrm{Amp}
\end{aligned}
$$

\rightarrow Short dk KVA $=$ Base $k V A \frac{x 100}{x \%}$

$$
=5.000 \times \frac{100}{5.55}=90090 .
$$

Qa
Assume, Base $K V A=15,000 \mathrm{KVA}$

$$
\begin{aligned}
& \sum_{1-2}^{3} \\
& \frac{8}{3}=\Omega \\
& 2 \\
& 2=1044
\end{aligned}
$$

$$
\begin{aligned}
& 10 \mathrm{NNWA}=10,000 \mathrm{krA} \\
& S^{5} M Y A=S^{n}, 000 \text { oVA } \\
& \rightarrow \% \cdot x \text { at generator }=\frac{x 5^{3} 0000}{\frac{12,000}{21}} \times \geq^{5} 2 \%=15 \% \\
& \rightarrow \% x \text { at } f\left(6=\frac{35, \theta 06}{5 \sum, 00^{\circ}} \times 5 \%=15 \%\right. \\
& \rightarrow \% x=\frac{K V A \times x}{10 \times(k V)^{2}}=\frac{15,000 \times 4}{16 \times(10)^{2}}=60 \%
\end{aligned}
$$

$$
\begin{aligned}
& \text { y } \% R=\frac{R X K V A}{10 \times(K V)^{2}}=\frac{1 \times 15800}{10 \times(0))^{2}}=15 \% \\
& r \text { Total } \% x=60+15+15=90 \% \\
& \vec{r} \cdot Z=\sqrt{(1-R)^{2}+(\% x)^{2}} \\
& \rightarrow \quad=\sqrt{(96)^{2}+\left(15^{-}\right)^{2}}=91.24 \% \\
& I=\frac{\text { Base } K V A}{\sqrt{3} \times V}=\frac{1.5,000 \times 10^{3}}{\sqrt{3} \times 16 \times 70^{3}} \\
& \begin{array}{l}
\rightarrow I_{S C}=\frac{I \times 100}{Z Y}=\frac{866 \mathrm{Amp}}{91.24}=949.14 \mathrm{smp} \\
\rightarrow \text { S.C. KNA }=\text { BasetinA }
\end{array} \\
& 7 \text { S.C:KNA }=\text { BasekvA } \frac{x 100}{1.2} \\
& \begin{aligned}
=15,00 \times \frac{100}{91.24} & =16440 \mathrm{kVA} \\
& =16.44 \mathrm{MVV}
\end{aligned} \\
& \text { Q3) }
\end{aligned}
$$

$$
v=11 \mathrm{kv},
$$

yAtssume,
Base KVA = 5,000 kVA
$\geqslant \% x$ at Base KVA for X.

$$
\text { Generator }=\frac{x, 600}{20} \times 6 \times 2 \%=6 \%
$$

$y \% x$ for y generalor $=\frac{5,000}{10,000} \times 12 \%=2 \%$

- $\% x$ too z generator $=\frac{55000}{57000} \times 18 \%=18 \%$
$Y \% x$ at Base $^{k V A}=\frac{5>000}{5,000} \times 5 \%=5 \%$
$(600$ ($/ 6$)

$$
\begin{aligned}
& =\frac{6 \times 6}{6+6}=3 \% \\
& \frac{3 \times 18}{3+18}=2.57 \% \text { ((tor low } \begin{array}{l}
\text { voltage }
\end{array}
\end{aligned}
$$

voltage side)
\rightarrow For high voltage side $=2.57+5$

$$
\begin{aligned}
& -1 I=\frac{5,000 \times 10^{3}}{3 \times 11 \times 10^{3}}=262,43 \mathrm{Amp} \\
& \rightarrow I_{S C}=\frac{I \times 100}{\% x}=\frac{262.43 \times 106}{7.37}=3466.7
\end{aligned}
$$

$-y$ Shoot ckt $k V A=5,000 \times \frac{100}{7.57}=66050.19 \mathrm{kVA}$
(tor high vallag side) ${ }^{7.57}=60.05 \mathrm{M} 7 \mathrm{~A}$

$$
\rightarrow \quad I_{S C}=\frac{262.43 \times 100}{2.57}=10211.28 \mathrm{AMP}
$$

-4 Short ct KVA $=5,000 \times \frac{100}{2.57}=1945.52 .5-K$ vo r (bro lower vollege side)

$$
=194.5-5-M V A .
$$

944

$$
0.2 \times 50=10 \Omega=R, \quad 10 \mathrm{MMVA}=10,000 \mathrm{kMA}
$$

$$
1 \times 5-0=50 \Omega=X
$$

\rightarrow Assume., Base $R V A=20,000 \mathrm{kVA}$
$-y \% x$ at Base k VA $=\frac{20,000}{10,000} \times 20 \%=40 \%$
(tor A) $\quad\left\{\begin{array}{l}10 \mathrm{~s} 2 \\ 50 \Omega\end{array}\right.$

$$
\begin{aligned}
& \rightarrow \% x \text { b } B=\frac{20,600}{57000}=10 \%=40 \% \\
& -4 \% x=\frac{x \times K Y A}{10 \times(k V)^{2}}=\frac{50 \times 20,000}{10 \times\left(332^{2}\right.}=91.827 \% \\
& -4 \% R=\frac{10 \times 20,000}{16 \times\left(331^{2}\right.}=18.36 \%
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \text { Tofal } \% x=40+40+91.82=171.82 \% \\
& \rightarrow \quad \% z=\sqrt{(171.82)^{2}+(18.36)^{2}}=172.79 \% \\
& \text { y } I=\frac{20,000 \times 100^{3}}{\sqrt{3} \times 6.6 \times 10^{3}}=1749.54 \mathrm{Amp} . \\
& \Rightarrow I_{S C}=\frac{I \times 100}{\% . Z}=\frac{1749.54 \times 100}{172.79}=1012.5 \mathrm{Amp} . \\
& \Rightarrow \begin{aligned}
\text { S.C. } K V A=20,000 \times \frac{100.05}{172.79} & =1157847 \mathrm{kVA} \\
& =11.57 \mathrm{MVA}
\end{aligned}
\end{aligned}
$$

9) A $3 \phi 20 M \gamma A$, 10 kV alternator has internal reactance of 5% \& negligible resistance, find the external x per ph. to be conc. In series with the alternator, so the sic current (rs) does not exceed 8 times the tall load current.

$$
\begin{aligned}
& \rightarrow \quad I_{S C}=8 \times \text { full }: \text { load current (7) } \quad 20 \mathrm{M} V A=20,000 \mathrm{klh} \\
& \rightarrow \quad I=\frac{20,000 \times 70^{3}}{\sqrt{3} \times 10 \times 10^{3}}=115.6 .7 \mathrm{Amp} \\
& I_{s c}=I \times 8 \\
& -y \quad I_{S C}=1154.7 \times 8=9237.6 \mathrm{Amp} \\
& \Rightarrow \frac{T}{I_{s c}}=\frac{1}{8} \\
& \Rightarrow \frac{I_{s c}}{I}=8
\end{aligned}
$$

\rightarrow We know,

$$
\begin{aligned}
& I_{S C}=\frac{I \times 100}{\% x} \\
& \Rightarrow \% x=\frac{I \times 100}{I_{S C}}=\frac{1154.7 \times 100}{92.34 .6}=12.5 \%
\end{aligned}
$$

\rightarrow External Reactance $=12.5 \%-5 \%=7.5 \%$

$$
\Rightarrow x \%=\frac{x \times k V A}{10 \times(K V)^{2}}=y x=\frac{\% x \times(k V)^{2} \times 10}{k V A}=0.37 .5
$$

(rn)
We know,
-7

$$
\begin{aligned}
& \%=\frac{I X}{V_{p n}} \times 100 \quad V / p h=\frac{10 \times 0}{3}=5773.5 \\
& \Rightarrow x=\frac{\% \times x \times}{I \times 100}=\frac{7.5 \times .5773 .5}{1154.7 \times 100}=0.375
\end{aligned}
$$

Q) $A 3 \phi 3 O M V A, 33 \overline{\mathrm{kV}}$ alternator has infernal x of 5% and neglisible reactance. Find the external, per phase to be conn in series alternator so the steady state current on shoot ckt does not exceea it fins of the bull load current.

$$
\sqrt{ }=33 \mathrm{kV}
$$

$I_{S C}=10 \times$ tall lead current e
Let, Base KVA $=15,000 \mathrm{KVA}$

$$
\begin{aligned}
& 30 \mathrm{NIVA}=30,000: \mathrm{KVA} \\
\therefore I= & \frac{30,000 \times 103}{33 \times 13 \times 10^{3}}=5248.63 \mathrm{AmP} \\
I_{S C}= & 10 \times 5248.63=52486.3 \mathrm{Amp}
\end{aligned}
$$

rive know,

$$
\begin{aligned}
& I_{S C}=\frac{I \times 100}{1, x} \\
& \Rightarrow 4 \% x=\frac{T \times 100}{I_{S C}}=\frac{5248.63}{52486.3} \times 100=\frac{1}{10} \times 100 \\
& =10 \%
\end{aligned}
$$

- External Reactance $=10-5=5 \%$

$$
\begin{aligned}
& \text { yo } \% x \\
&=x \times \frac{T x}{v} \times 100 \\
&=\frac{\% \times v_{p h}}{2 \times 100} \\
& \Rightarrow x=\frac{5 \times \frac{33,000}{\sqrt{3}}}{5248.63 \times 100}=0.181 \Omega
\end{aligned}
$$

$\mathrm{ch}^{2}-3$
\rightarrow A fuse is a short piece of metal in-serted in the ct which. melt $\&$ when excessive current thews through it and those break the chat.
\Rightarrow Principle of fuse:-
The fuse material generally made up on the material which having low melting point high conductivity \& least deteriation due ta oxidation.
-Ex:- Silver, copper etc.
-1 It is inserted in series with the ckt to be protected.
\rightarrow Under normal operating condn the fuse element is at temp. below its melting point.
T Therefore it carries the normal current without over heating.

- When a shoot ckt or ver-loaded occur p the current through the fuse increase beyond its rated value.
\rightarrow This rises the temp. of fuse element \& the tue element melt 7 discomn the ckt, which is protected by if.
\rightarrow In this the fuse protect the device, mic equipment tom damage due to the excessive current.
\Rightarrow Advantage:-
\rightarrow It is the cheapest term of protection.
\rightarrow It req no mainfainance.
\rightarrow It can break having short ck current without noise or smoke.
Y Minimum time of operation can be made much
shorted them the ckt breaker.:
\rightarrow It is operation is completely auto-matic unlit. a et breaker cahich required an elaborate equipment for automatic action
\Rightarrow Disadvantage :
\rightarrow Considirable time if closed in re-cuiring or replacing a tare after operation.
\rightarrow On heavy short ext discrimination beth tue if series canst be obtain unless their is sufficient differ in the sizes of the tue.
t The current time characterstic of a fuse cant be always corredated protected equipment.
*Desirable characterstic of fuse element e:-
\rightarrow The tue of a tasse is to carry the normal current euithout over heating but when the current exceed 9 it it normal. value eft rapidly heat 7 up of ta melting points \& disconnd the alt protected by it.
y In order to portions this fun' the base element should have following desirable charactersitic $\$$.

1. Low melting point. Exi-tin \& lead.
2. High conducting copper \& silver. oxidization.
3. Free from deforiation due to oxidation.

Ex:- Silver
4. Low cost. Ex:-lead, tin, copper.

* Fuse Element Material:-
\rightarrow The most commonly used material for wise element are lead, ion, capper, zinc \& silver.
\rightarrow For small current up to 10 amp, tin or
an alloy of leads \& tin.
[lead $=37 \%$ \& tin $=63 \%]$ is used for making the fuse element.
\rightarrow For larger current copper or silver $i . f$ used.
* Important terms :-
. Dt-0) $01 / 2000$
The following terms are much used in the analysis of base;
4 current rating ot gouge element:-
\rightarrow It is the current which the tue element can normally carry without over heating or melting.
\rightarrow It depends coupon. the temp. rise of the contacts of fuse holder, fuse material \& surrounding of the fuse.
xi. Easing current:: It is minimum current at watch the fuse element melts \& thus disconnect the ck protected by itu.
HIts value will be more than the current rating of the fuse elements.
\rightarrow The approximation bet' fusing current (I) \& diameter ' d ' of a wire if $I=K d^{3 / 2}$
\rightarrow The busing current e depends upon the various factor such as;
d). Material of base element.
b) Length
dy Diameter
d) Size \& location of terminal
of Types of encloser.
iii) Fusing factor:- It is the ratio of minmbusi: current to the urrront rivaling of fuse. Fusing factor $=\frac{\text { Min busing current }}{\text { current rating of tue }}$

H It value is always more than one.
\rightarrow For cue wire as the tue elements. the bushy factor is usually 2 .
is Prospective

7 It is the RNMS value of the 1 st loop of the baulk. current obtained it the base if replaced by an ordinary conductor of neglisible R.
v) cut oft currents: - It if a maxi value of the boult current actually reach before $\%$ tue melt. It devepends apron the warmest of prospective current.
wit Pre-arcing, times the value of prospective carnet.
It \&f The time beth the commencement of fault \& the instant where the cut-obt occurs. A tipical value of prearcing time sss. 0.001 sec.
ais Arcing time: This is the time beth the end: of pe-araing time \& the instars when the arc is extinguished.
vise Total operdethy time: -It is the sunot: pre-araing time of arcing time. It may be noted that the ope. tine of fuse if generally quite low ire. approximately 0.002 sec .
＊Types of Fuse：－Fuse is the simple current intercepting．device for protection against excessive current．In general it may alassitied into 2 typg ．
i）Low voltage fuse
ii）High＂，＂
i）Low voltage fuse：－
（a）Semi－closed reuirable buss．
（b）High reputuring capacity cartridge bise（HRC）
a）Semi－closed recurirable fuse：－
\rightarrow The rewirable tue also known as type．
\rightarrow These are used where low value of these current are to be interrupted．
H左 consist of a base \＆a fuse carrier．
\rightarrow The base is ot percelain \＆carriers the fined contact to which the incoming \＆outgoing of phase wires are connected．
\Rightarrow The fuse carrier if also of percelain \＆hold y The fuse element beth its terminal． \Rightarrow When fault occur the fuse element if blown out \＆the eke is interrupted．
\rightarrow The fuse carrier is taken out \＆the fuse elena
its replaced by the new one $\&$ then: The suse carrier is inserted in the base te restore the supply.
\rightarrow This type pt fuse has 2 advantage;
$\stackrel{y}{*}$ The tue carrier permits the replacement of tue element without any danger. :.
ii f The cost of replacement. if neglizible.
Disadvantage:-
i) There is a possibility an removal by the base wire of wrong size or by improper material.
7) This type of tore has a bow breaking capacity \& hence it canst be use the old of high fault level
iii) The fuse element subjected the the deteriation. due to oxidation through the continuous heating of the element. Therebroe after some time the current ratting of the fuse is decreased i.e. the tue operates at a lower currents. than roiginaly rated.
ivy The protective capacity of such fuse is uncertain.
v) The accurate calibration of base wire $\$ \$$ not possible beck the busing current very much depends upon the length of the busing currant.
\rightarrow The semi-chcloses receireable fuses are made apta sooamp rated current but the breaking capacity is low ie on. 400 volt service. \rightarrow This type of tue is limited to domestic \& The use of lighting load.
b) High reputuring capacity cartfige fuse:-

\rightarrow To overcome the disadvantage of semi enclosed rewirable base, HRC cartridge bose is case:
HIt consist of a heat resisting ceramic body having metal \& caps to which is welded silver current carrying element.
\rightarrow The space with in the body surrounding the element wish is completely packed with a belling powder:..
y The filling powder may be chalk, plaster of paris: quartz or marble dust etc. which are act as are quenching medium.
\rightarrow Under normal load: condition the ouse element is temp. below its malting pt. Therefore eth carries the noons current without over heating. When a boult occurs the current increase \& the base element melt.
\rightarrow The heat produced in the process vaposise the melted silver element.
\rightarrow The chemical reaction beth the silver vapour b The filling powder results in the formation of high resistance, which helps quenching the are.

* Advantage:-
i) These are capable of clearing high as well as low fault current.
inc. These are not detoriake with age. lily They have high speed of operation: iv They provide reliable' discrimination. v. They rear no mainfainance. vil They permit consistant performance.
* Disadvantroge:-
i) They have to be replace after each operation.
ii) Heat produce by the are may effect the associated slue.
*HRC fuse wish tripping device:- $\quad \begin{aligned} & \text { It } \Rightarrow 24 /(0) / 2000 \\ & \rightarrow \text { plunges: }\end{aligned}$
Here in this device. HRC cantroidge bise is provided with a tripping device.

\rightarrow When the buse blow out under the boult. cont the tripping device causes the cktt breaker to operate. The body of the fuse is of ceramic material with a metalic cap tined at each end. At one end a plunger is connected colic under balt conditions hits the tripping mechanist of the ckt breaker. \& cause it the operate. \rightarrow The plunger is electrically. through a tusable link, chemical charge \& a forgston wire ta
the other end of the cap.
y When a fault occurs the silver element e at the $1^{\text {st }}$ to be blown out \& then the current is f lt to the fongstor wire.
\Rightarrow The weak link in series wist the tongsten. wire gets. bused \& cause the chemical charge to be detonated. This forces the plungers outward to operate the ckt breaker.
\Rightarrow Adr.: In case of 1ϕ fault on a 3ϕ system the planger operates the tripping medounism
of the $C \cdot B$. to open all the 3 \& thus of the $C \cdot B$. to open all the 3ϕ \& thus prevents single phasing.
\rightarrow The effect of short cot current need not be considered in the choice of CB.
\rightarrow App:-
\Rightarrow LY fuse:-
\Rightarrow The LV HRC fuse may be built with a breaking capacity of 16,000 Amp to 30,000 Amp at 440 roll.
\rightarrow They are extensively used in $L V$ distribution system againest over load \& short aet cord?
* High voltage fugs:-

The LV fuse have normal current rating \& breaking capacity there or they cant be successively use on HV hue, so we use HV
kure for the HV ckt abuse for the HV ckt
(a) Cartridge types. This is similar to the $L V$ catridge type except the special deming bealures.
\rightarrow Some design employ burse element wound in the form of helix, so as te aroid corrona effect at higher voltage.
"Some design thereomen are 2 suse element in parallel me is low resistance (silver) \& the others of high R, ctangsten wire)
\rightarrow Under nominal load cons ${ }^{n}$ the low R element. carry. the normal current but when the boult occur the. Low R element is blown out \& high R element reduce the short che current \& finally break the ckt.
$\rightarrow \mathrm{HV}$ cartridge these are used up to 33 kv with breaking capacity of 8700 Amp.
(b) Liquid type:-
\rightarrow These base are filled with carbon tetra chloride they may be used far the ckt septa 10.0 amp rated current on the system upte 132 kV \& the breaking capacity of 6100 amp . It consist of a glass tube tilled with carbon terror chloride $\left(\mathrm{CCl}_{4}\right)$ sol \&: seafted at both end with brass cap.
\rightarrow The base wire is sealed af one end of the tube is the other end the wire is halal by a strong phosphernusbroniz spire spring. fixed at the other end of of the glass tube. current exceeds the fuse wire is blown out

Q/A fuse wire of circular srosection has a radius of 0.8 mm the wire -blows of at a I of $8^{\text {Amp }}$. Calculate the R of the wire thou will blow of af a I ot 1 amp .

410

$$
\begin{aligned}
& r^{\prime}=0.8 \mathrm{~mm} \\
& I^{\prime}=8 \mathrm{mmp} \\
& I^{\prime \prime}=1 \mathrm{mp} \quad k \rightarrow 1 \\
& \therefore=? \quad \begin{array}{l}
\text { I }=k d^{3 / 2} \\
\Rightarrow I^{2}=d^{3}
\end{array}
\end{aligned}
$$

\Rightarrow Heat produced per sec $=$ Heat
loss per sec
$\Rightarrow I^{2} R=$ Constant X Eft. surface area

$$
\Rightarrow I^{2} R=\text { constant } x d x \rho
$$

$$
=y I^{2} \cdot \rho \frac{P}{A}=\text { constant } X \cdot d X X
$$

$$
\Rightarrow I^{2}=K x d^{3}
$$

$$
\Rightarrow I^{2} \alpha d^{3}
$$

$$
\Rightarrow\left(\frac{I_{2}}{I_{1}}\right)^{2}=\left(\frac{\gamma_{2}}{\gamma_{1}}\right)^{3}
$$

$$
\begin{aligned}
& \Rightarrow\left(-\frac{1}{8^{\prime}}\right)^{2}=\left(\frac{\gamma}{0.8}\right)^{3} \\
& \Rightarrow \quad \frac{1}{64}=\frac{\gamma^{3}}{0.514} \\
& \text { R } 0 \text { 旬 } / 3022^{30}=8 \times 10^{-3} \\
& \gamma=\sqrt[2]{0.008}=0.2 \mathrm{~mm} .
\end{aligned}
$$

chi Circuit Breaker
Dt-31/01/2020
$\rightarrow A$.circuit breaker is a pi of equipment which can make or break on ckt either man-. ally or by remote control under normal conditions. Break a ckt automatically under fault condition.
\rightarrow Thus as ckt, breaker in corporate monceal as well as automatic control for switching function.

* Operating Principle :-

A cat breaker essentially consist of a fixed contact \& a moving contact under normal operating condo 7 . This contact remain close and It will not open automatically. \qquad and unless the system becomes faulty.
\rightarrow The contact can be opened manually whenier desired when a boult occur mi any part of the system. the trip coil of the cket breaker get energised and the moving contact are palled a part by some mechanism, thus the ckt will pen.

* Arc Phenomenon: - When a short cot occure a heart: current Hows through the contact of ckt breaker berra there open by the protecting system, at the instant. When the contact began to separable to contact area decrease rapidly \& the large boult current cause increase large current densify and hence raising temperature
1 The heat produce and medium contact (casually the medium is 'vil or airt is sufficient ta ionise the air or oil.
\rightarrow The ionised air or vapour act as a conductor and an are if stuck bet the contact. \Rightarrow The potential differ beth the contact is quite small \& just subticient to mointaine the are. \rightarrow The are provided a low R. path \& consiquint the current in the cot remain uninter opted so long af the arc is persist.
\rightarrow Diving the arcing period the current Hown'y beth the contact depends upon the are R -greater the arc Resistance, the smaller in the current that blows beth the contact.
\rightarrow The arc R depends upon the following tractors
(i) Degree of ionisation:-
\rightarrow The arc R increase with the decrease of the no. of ionise particle beth the contact.
(of Length of the Are:-
The are R increase with the length. of the arc ie separation of contact.
(iii) Cross-section area of are:

The arc R increase with decrease the crosectional area of the are.

* Methods of Are Exténsion:-

There are 2 methods it extinguishing. of are in CB these are
(2) high R method
vi) Low R., or current - 0 meth

H High R Method:-
In this method the Arc is increased \Rightarrow with time, so that current is reduced to a value Insubtricient to maintaine the arc.
\therefore the I if intruppted \& the arc is extinguishaioy
\rightarrow The iadis.and. of this method is dissipation high energy in the are.
\therefore It is employed only in dc ckt breaker \& low capacity AC ckt breaker.
\Rightarrow The R of the are may be increased by
(a) Lengthening (\rightarrow) the arc:- The R of the are if dire proportional to its lengthen, the length of the are can be increase by increasing the gap between that contact.
(b) Cooling the are:-
\rightarrow The cooling helps in the de-ionisation of the medium beth the contact, this increase the arc R. (c) Reduaig the crossection area of the arc:-
ling the area of crosection of arc is redan, the R of the arc increase. The crosection area of the arc can be reduce by letting the are pass through a narrow opening or by having smaller area of contact.
(d) Splitting (xn) the Arc:-
splitting the R of the are can be into a no. of smatlease by inseries. The are may be split by introducing some conducting plate beth the 2 contact:

* Low R method :-

This method is employed for arc extension in $A C$ ct only. In this method arc

Is kept low untill current is Zero, where the are exilengistions naturally
\rightarrow In an $A C$ system the I atop to zero, abter even halt ... cycles the every I zero the are extinguish foo a bries: moment.

- Now the medium beth the contract contain in $\&$ electron so that it has small dielectric strength \& can easily breakdown by the rising contact voltage known as restriking voltage.
\rightarrow The de-loniss of the medium can be achived by
* lanthening at the gap:- The dielectric strength of the medium 17 proportional tu the length of the gap beth the contact.
$\rightarrow \therefore$ By opening the contact rapidly higher dielectric
\therefore strength can be achieved
* High Pressure: $\frac{\text { If }}{=}$ the pressure of the arc is increase the density of charge particle constituting the discharge also increase. The increase density of particle cause higher rate of decionisation, \& consiquently dielectric strength at medici m ob conlaik if increase.
* Cooling:- The natural combination of zonise particles takes place more rapidly if they are allowed. to cool."
$7: \therefore$ dielectric strength of the medium can be increase by cooling the are.
* Blast. effect: - If the ionise particle beth the contact are swept away \& replace by un-ionised
particle the diellecticic strangtic at the medrim can be increases \& Nus may be achive by a' gas blast or by tercing the oil beth the intact.
* Classification of che broker:-

There are several way ot classiting the CB. however the most generals way of classifiatia if on the basic st medium used for are extension.
\rightarrow Accordingly the che breaker may be classitied : into following tyke: -
$\psi \theta_{i}^{\circ}$ ct breaker:-
Which employed some insulating $0 i^{\circ} 1$ for are extension.
qHA<compat>r blast $C B$ In which a high pressure air blast if used for estingicesh arc:
3 Super hex Horide $C B:-\left(S F_{G}\right)$:-
In which $S F_{G}$ gas is used for arc extension
4) Vacuum CB: - In which vacuum if use for arc extension.

1) $\mathrm{O}_{2}{ }^{\circ}$ chat breaker:-

In such $C B$ some
insulating $Q i$ if use as an arc quenching medium.

- The contact are open under $0 i^{\circ}$ \& the are is struck
bet er them.
\rightarrow The heat of the arc evaporate the surromnaling $0 i^{i}$ \& produce the gastous hydrogen at high Pressure.
\rightarrow The H gas occupies a volume of 1000 fines that ot the oil decompose. The oil if \therefore pushed away from the are \& an expending H gas bubbles surround the are region \& adjucent portion of the contact.
\rightarrow The extension
$\rightarrow \therefore$ The are is extengluyhers \& the che current interrupted.
\Rightarrow Adv:-
$\Rightarrow 0_{i}^{\circ}$ as an are quenching medium are:4) If observe the are energy g to decompone the oil int gases.
ir y It act as an insulator \& permit smaller cleuran, beth the conductor.
$\Rightarrow D i s$. ads:-
${ }_{71}$ It if inflammable \& there if a risk of fire ci If may form an explosive mixture with air.
\Rightarrow Types ot ot $\frac{C B}{=}$:-
types.
(2) Bulk $02^{\circ} 1$

Which use a large quantity of ot
The oil has to serve to purpose,
ca) of extinguish the are during opening of the contact.
(b) It insulate the current conducting part from one another
\rightarrow Such ckt breaker can be classified into 2 ty A
(A) Plain break oil CB
(B) Arc control

B of Low Oil CB :-
Which use minn amount of $0^{2} l$, In such 1 ${ }^{-} C B$ oil it used only for are

* Plain break of CB:-
\rightarrow This att breaker invatues the simple process of separating the contact under the oil.
\rightarrow There is no special system for arc control other then increase in length, caused by the separation of contact.
\rightarrow The arc extension occurs when a certain crifial gap beth the contact is reached.
\rightarrow It has a very simple construction.
\rightarrow It consist of fixed \& moving contact whichis enclosed in a tack containing on' upto a certain, level. and an air cushion above the oil level.
\rightarrow The air cushion provide subtivient space fa allow for the reception of the arc gases without the generation of unsafe pressure.
\rightarrow out the guider normal operating condo'. The tire \& moving contact remain closed \& the cot breaker carry the normal ckt currents.
\rightarrow When a salt occur the moving contact are pulled down by the protective system \& an are is struck ed which rapourise the oil inks hydrogen gas.
\rightarrow The arc extension is be by the following process;
2). "H'gas bubble generated around the arc\& cools. the are.
${ }^{\circ 7}{ }^{\circ}$. The are langters due fo the separating contact, the dielectric strength of the medico is increase. Ass the result the are is extingisst \& the ckt current intruppted
* Dis. Adv.: - There is no special control over the are other than increase in length of separating the moving contact, \therefore for sucresstal interruption long are length is necessary
r This breakers have long \& inconsistance arcing time.
\rightarrow The's breakers do not permit high speed interruption.
\rightarrow Due the this dis.ath. The plain break oil $C B$ are used only for $\angle V$ app.,
* ArC control $\frac{a^{\circ} \mathrm{CB}:- \text { - }}{\text { It is }}$ necessary desirable that the binal arc eabinstion should our while the contact gap if short. For this purpose some are control is : incorporated (use) \& the breaker which are used the breaker is called as are control $C B$.
\rightarrow There are 2 types of this $C B$;
i) Self blast oil CB
ci y Forced blast oil $C B$
i) Self blast ${ }^{\circ} 21 \mathrm{CB}$:- It is the $C B$ wi which arc control is provided by internal means ie. the arc itself is employed for its own extinction efteciently.

YIn the's type of $C B$ the gases produce during , arcing are confind (Y/囚A) to a small volume by the use ot insulating chambers or put. surrounding the contact.
\rightarrow since the space available for are gases if restrict by the chamber, a very high pressure if developed to force the oil \& gas through the are
\rightarrow fo extinguish it.
\rightarrow The magnitude of pressure develope depends on : the value of boult current to be intrupted. \rightarrow When: the pressure if generated by the arc itself. \therefore "s such breaker some time called self generalect pressure $a^{\circ} 1$ CB..
\rightarrow There are several design of pressure chamber has been develope. These are;
(i) Plain exploation pat
4.) Cross jet exploation pot
(ru) Self corponsatal" pat fixed

* Self blast oil CB. (PEP) contactiDt-13/02/2020

4) Plain exploation pot:

It Is a rigid cylinder of insulating material \& encloses the binned \& moving contact as shown in fig.
\rightarrow The moving contact is a cylinderical rod passing. Throat restricted opening. (called th moving contact through a restricted opening. (called throat) at the button. fault occur the contact get separated When a boult is struck beth them.
β an arc is
\rightarrow The heat. of the arc decomposes oil into a gas at a very high pressure in the pot.
\rightarrow This high pressure traces the oil \& gas arocend the arc \& thus the arc if extinglished.
\rightarrow The principle limitation of this pot if it cans be used for very low or very high taculh current.
\rightarrow The plain exploation pot operation on moderate Is only.
iv. Cross jet exploation pot:- (CJEP) has hab le
t This type of pot is a modification of Plain exploation pat as shown in Fig.
l yt is made op of insulaliting materials has a channels on one side which act as ap are splitters: y It help in increase the are length contract thus the are is extinguish.
then a balt occur the moving contact of the $C B$. began to separate or start to separate as the moving. Constant is withdrowion, the: arc is initially struck in the top of the pot.
\Rightarrow The gas generated by the arc exert pressure on the oil, when the moving contact weavers. the are splitter duct, fresh oil es trace across the are path.
$\rightarrow \therefore$ The arc is driven into the are spliter. which increase the are length. Thus the
arc is extinguish:
${ }_{y}$ This's. pot is quite etbeciant for interrupting. hears fault current.
Mi) Self componsated exploation pot:- Fixed contact cexposicin.

This type of pot is a combe plain exploasion type pot \& cross jet " interrupt" low as well as heard. S.c. current (ISC)
yt consist of 2 chamber the copper chamber if CJEP with two are splitter duct, while. the lower
 one is PEP.
\rightarrow When Is if heard the rate of generation of gas i\$ very high k the device behaved as a CIEP. A when the low. Iss the rate of gas

- generation is low or small..
\rightarrow When the moving contact comes out from the throat the arris estingieshed by plain explosion potation.
* Fore blast oil CB:- In this are control method if provided by mechanical means the ckt breaker externally.
\rightarrow The major limitation of self blast out $C B$ no that the arcing time is long. o over come this limitation we use force blast oil $C B$ in which The necessary pressure which produced by the external mechanical mean $\$ \wedge$ Shdepends of boult
current. I In a force blast oil CB oil pressure is created by the piston cylinder arrangement. The movened of piston is mechanically coupled to the moving contact.
\rightarrow When- a boult occur the contact separated if the protective system \& an arc is struck
\Rightarrow beth the fixed contact \& moving contact. The" piston troves a jet of oil froward the cone, gap fo extinguish the are.
* Ads::- Since oil pressure developed is independ of fault current the performance at bo current is more consistance than self blast oil C.B.:
\rightarrow Quantity of oil required is low/reduced top chained \Rightarrow
* Low oil

\rightarrow In the bulk oil CB the oil has to pertorm future
(i) It act as ar are quenching medium
(ii) It insulates from the earth.
- for this reason "the quantity of an oil in a bulk oil CB is very high.
\rightarrow But in case of low vil CB a small amount of oil is used as an arc quenching medici.
* Construction :-
\rightarrow There are 2 compartment separated from each other bat both filled with oil. The upper chamber is the ckt breaking chomper while The lower chamber if supporting chamber.
\rightarrow The 2 chamber by separated portion \& will. from one chamber is prevented from mixing with other chamber.
\rightarrow This arrangement permits 2 act. ;
i) The ckt breaking chamber regor a small volume of oil which is enough for are extension. ci) The amount of oil if to be replace is reduced as the oil in the supporting chamber doesnot get contaminated by are.
(a) Supporting chamber:-
\Rightarrow It is a porcelain chamber mounted on a - metal chamber. It is tilled with oil which is. separated from the oil in the ckt breaking chamber.
\rightarrow The σ^{\prime} inside the supporting chamber, porcelain \& the bakilised paper is employed for insulation purpose.
(b) Cur pose. breaking chamber: It is a porcelain enclosed mounted on the lop of the supporting chamber. rIt is tilled with oil \& it has the following parties
(2) Upper \& lower fixed contact
(iv) Moving contact

324 Turbulator
\rightarrow The moving contact is a hollow \& include a cylinder which moves down over a binal a piston
\rightarrow The turbulation $\&$ an are control devices $\&$ has both axial \& radial vent. The axial venting ensured. the interruption of low current where as the redial venting help in the intructing of hear current.
(c) Top chamber: It is a metal chamber mounted on the ct breaking chamber it provides expartion space for the oil in the ct breaking chamber. * Operation:- Under normal operating cond' the moving contact remains closed with the fixed contact \rightarrow Wheen a taut occur the moving contract is pubs down \& an arc is struck beth the fixed contact $\%$ moving contact.
\rightarrow The arc energy ropourise the oil \& produces gasicu cinder high pressure. This action construing the oil to pass through the central hole of the moving contact \& ridullis ta forcing oil through. The passage of the turbulator.
\rightarrow The process of turbulation which is used to successively quenching the arc.

* Adv. - - al y A Loo art ct breaker has bolloreing abb. over a bulk oil CB;
in It reg lesser quantity of ail (init. roo less
space.
ix) There is reduce risk of tire. a) Maintainance problem is reduce
- Dreadvo:-
*) Due fo smaller quantity of $\sigma^{\circ} \%$ the alegree of carbonisation is increase.
(ii) There is a difficulty of removing. The gases from the contact spare in time.
Mut The dielectric strength of of l detariates rapidly due to the high degree of carbonisation. * Maintance of Oil CB:-

The maintainance at oil CB generally concerned with the checking of contact \& the dielectric. strength of ${ }^{\circ} \%$
\rightarrow During the inspection of breaker following point fo be taken.

1) Check the current coring part \& arcing contact, if the burning in sevisur the contact should be replaced.
2) Check the dielectric strength of of , if the. oil i\$ badly discolour it should be changed.
3 . Check the oil level.
ty Check the insulation
sf check closing \& tripping mechanism.

* Air Blast ckt breaker: high pressure air blast In this oct breaker. high pressure contact are opened used as are quenching medium. The the opening of in a flow of air blast establish by the opening of blast valve
\rightarrow Air blast cool the arc \& sweeps away the arcing product to the atmosphere
H This rapidly. increases the dielectric strong of medium betti the contact \& prevent from
re-establishment of arcand the arc is f estridngicesh \& the blow of. I \&\& interrupted.
* Acth:-
\rightarrow The air blast $O B$ has the following adv. over an oil $C B$ \& these are:

1. The risk of fire is eleminated.
2. The arcing product are completely removed by the air blast where as the oildelerialy: with successive ope.
3. The arcing time is very small.
4. The energy supply for arc extinction is obtain from high presser air \& is independent of the Ito be interruption.

* IDs adv:- The use of air as a quenching medium hag, the following disadvantage:-
\triangle The air blast $C B$ are very sensitive le the variation in the rate of rise of Re-striking voltage
4 Considerable maintainance if rear for the compression plant which supply. the air blast.
\Rightarrow Types of air blast $\frac{C B}{=}$:
Depending upon the direction of the air blast ta the are, the air blast $C B$ can be classitied into. 3 types; (a) Axial blast type
(b) Cross blast.
(c) Radial blast
(a) Axial Blast type:-
\rightarrow In which che air blast is directed along the are path as shown in fig.
\rightarrow The fig. shows the essential part of air blact:B The fixed d. moving contact are held in the. close position by the spring under normal: cold!.

\rightarrow the fig aid reservist is conn tu the arcing chamber through an air valve. The air valve remain closed cinder normal operating condo bat it opens, automatically by tripping mechanism when a fault occur on the system.
t When a fault occur the tripping impulse causes opening of air valve which connect the $C B$ reservior to the arcing chamber.
\rightarrow The high pressure air entering the arcing chamber push away the moving contact against spring pressure.
\rightarrow The moving contract is separated $\&$ an arc is produced and at the same time high pressure air blast flow along the are and therefore, the are is extinguished and the current flow interrupted.
(b) Cross blast air blast CB:-
\rightarrow In this type of $C B$ air blast is directed at right angle to the arc.
\therefore The cross blast lengthen and force the arc for arc extension.

Then the moving contact is separated, an are is produced beth tied \& moving contact.
\rightarrow The high pressure cross blast forces the are into an are spliter. The spliter serve te increase the length of the arc. This results the are extension \& the How of current interrupted. Are splitter

* Sulpher Hexa-Hloxide CWt breaker (SF) in Sta gas 1

YA CB : - which uses sulpher hexablaride or $S F_{G}$ gas as arc extinguish medium is known as SF G $C B$. \rightarrow The $S F_{6}$ gas is a very good dielectric material which can resist high potential.
\& $S F_{6}$ is an electro negative gas \& has a strong tendency fa absorve bee electrons when-ever the $C B$ opens it contact an are cull boomed beth the 2. contact at the same time a high pressure S_{6} goes pumped on the arc.
The conducing tree electron in the acc are rapidly captured by the gas to form relatively immobile.
-ve ion.
\rightarrow This losses the condruting electron in the are \& quickly build up the insulation strength to extingiush the arc.
\rightarrow The $S F_{a} C B$ are very effective for high power or high voltage ope...

* Construction: - The SEa CB consist of a fined contact and a moving contact \& closed in andre intrreptio. chamber which contain S_{G} gas.
\rightarrow This chamber is conns to the. SFQ gas reserve:
\rightarrow When the contact of $C B$ are. open the value. mechanism permit a high pressure $S F_{a}$ gas from the reservoir be blow toward are interruption chamber. The fix contact \& moving Contact are hollow cylinderical arrangement. The moving contact contain rectangular holes in the side th permit. the $S F_{Q}$ gas out through these holes after blowing along the arc.
\rightarrow The tips of fixed contact \& moving contact \& arcing horn are coated with copper - Tungsten are R material.
\rightarrow Since $s F_{a}$ it costly, it is recycled \& reused by the suitable awruliary system after each ope of the ckt breaker.
* Working:-

In the closed position : ot the breaker the contact remain surrounded by SF gas at a. pressure of 2.8 th $3.2 \mathrm{~kg} / \mathrm{cm}^{2}$
t When the breaker ope the moving contact is separated from the $\sigma^{i x}$ contact. \& the are is struck beth the contact $\%$:
\rightarrow The movement of moving contacte is synchronised with the opening of valve which permits SE gas ate pressure of $14 \mathrm{~kg} / \mathrm{cm} 2$ from the reserro; to arc intrueption chamber.
\Rightarrow The high pressure blow of SFF gas rapidly absorve the bree e^{-}in the arc path. \&. quickly build of high dielectric strength $\&$ causes the extinction of are.
-y After the CB ope. the valve it closed by the action : of spring.
os AdVo:-
by Due to superior are quenching property of SFogas.
the $S F_{G} C B$ have many adv: over of or air ckt breaker these are;

1. Due to the superiour are quenching property of STa gas such $C B$ have very short arcing time.
2. Since the dielectric strength of $S F_{G}$ gas is 2 to 3 time of air such breaker can introupt large current.
3. The $S F_{G}$ gas $C B$ give y noise less operation.
4. The closed gas enclosed keep the interiour dry so that there is na moisture problem.
5. There is no risk of tire in such breaker beck SFle gas is non-intlammable वथनकौष्टर.
6. The SF $C B$ have low maintainance cost and require min^{m} anocliary equipment. since. $S F_{C} C B$ are totally enclosed \& scald trim, atmosphere, they are particularly suitable where exploation hazard oqَañl) exist.

* Dig-advantage:-
r The $S F_{G}=C B$ ane costly due fo the high cost of $S f_{6} g a$
, \rightarrow Since $S F a$ goes has to be reuse or recons after every operation, additional equipment is reg for this purpose.
- Application:-
\rightarrow The SFG CB have been redeveloped for the voltog of $115-k v$ ta 230 kV , power rating of 10 MVA
ta 20 MVA .
* Vacuum ckt breaker:-(VCB)

\rightarrow In such breaker vacuum is cussed ans are quenching medium, since vacuum otter thevinsuldtion. strength it has superior arcighestquenching property then any other medium.
\rightarrow For ex when contact of $C B$ are opened in. vacuum", the interruption occurs at 1 st 1 in with dielectric strength beth the contacts building. of at a rake of 190. of fines higher than. the other $C B$.
*Operation:- When the contact of the breakers are opened in vacien an are 34 produce beth the contact by the Ionisation of metal sot the contact. Hoverer the are is quickelly exsting/yst beck the metalic vapour, electron \& ion. produce during arcrapidly condense on the scrobere of the CB contact.
\rightarrow Resulting in quick recovery of dielectric strength. In the $C B$ as shown as the are ${ }^{7} 7$ produced in waccuen it is quickly existing. icsh due the the $1^{\text {st }}$ recovery of dielectric strength.
\Rightarrow be \Rightarrow construction: It consist of fixed confogcte, moving contact \& arc shield mounted ensile a vacuum chamber.
\rightarrow The movable member is conn ${ }^{c}$ the the control mechanism by stainless steed Bellows:
\rightarrow This enables the permanent sealing of the vaccuom chamber sta to eleminate the probability of leakage.
AA glass vessel, ceramic recsel is used as
r the outer insulating body. The arc shield prevent the deforiation of the internal dielectric strength.
* Adv:- The vaccuan $C B$ have the following adv. I
(e) They are compact, reliable \& have longer ill There are no fire hazards.
rig They repp little maintainance.
sully They can successively withstant the lighting surge.

1) They have low are energy.
si) It can interrupt the heary boult 1 .
*The VCB are employed for outdoor application ranging from 22 KV bo 66 KV . with a limittea rating of $6 Q$ fe 200 MVA. This $C B$ are suitable for the rural area.

Protective $=$ Relays

* Relay should operate as bast possible in a boult condition but, it it should not operate so fast there should be occur in damage to the system.
* Fundamental requirement ot protective relay:-
* Sensitivity:-
\rightarrow The ability of relay fo operate or detect with a low value of actuating quantity.
\Rightarrow Generally it is a function of volt ampere rating. of relay." coil i.e. it the rating is low the. sensitivity ll high.
* Reliability: - On the occurance of boult the operating mechanism of a relay must operate so that the ct breaker can isolate the faulty part by obtaining information from the relay.
* Simplisity:-A relay construction should be simple, so. that the cost if less \& difficulty ir maintenance can be avoided.
* Economic :- A relay should not be costly enough work'" by used in protective system.
\rightarrow In common practise total relaying cost should not: more than 5% of the total coil, but cost can be compermized in case of important load \& equipmes.
* Types of Relay --
\rightarrow According to the operation of a relay, the relay can olassitied into 2 byes.

1. Electromagnetic. Attraction type
2. Induction type
3. Electromagnetic Attraction type:- This type relay operated by the vartue of an armature being
attracted the the poles of an electromagnet which is drawn este a solenoid.
\rightarrow Such relay can be operated by both A.C. or D.C. quantity.
\rightarrow The important type of electromagnetic attraction types relay are; -
(i) Attraction armature type relay
(ii) Solenoid type relay
(iii) Balanced beam type relay
i) Attraction armature type relay
\rightarrow The fig, show the schematic arrangement of an attracted armeture type relay.
\rightarrow It laminated electro-magnet (m)) carrying a $\cos ^{\circ}($ (c) \& a laminated armature.
\rightarrow The armeture is balanced by a
 counter. relight \& carries a pair it spring contact \rightarrow Under normal. op crating condition. the current throw relay coil is such that the pointer weight holds the armature in the tie as shown in fig.. ' \rightarrow However when a short ct occur the thrown. relay \cos is increase \& the relay armeture is \rightarrow
attracted upward.
\rightarrow The contact on the relay armeture attached the the relay frame this complete the trip ckt which result in the opening af the CB \& therefore the faulty section can be disconnected, from the healthy section.
\rightarrow The minimum current at which the relay armeture is attracted the close. the trip ckt is called as peak-up current:
ii) Solenoid type relay:-

1 The fig. shows the schematic arrangement of 1 solenoid type relay.
It consist of solenoid \& movable iron plunger, as shown in fig. under normal. operating condition the curral throw the retay coil see in such that if holds the plunger plunger, of ct by the spring as shown in big.
\rightarrow When the fault occur the current through the relay coil becomes more than the peak up. value causing the plunger to be attracted fo the solenoid.
\rightarrow The upward movement of the plunger close the trip ckt thus the CB open \& the faulty section can be disconnected from the healthy section.
viz Balanced beam type relay:-
\rightarrow The big. shows of a balanced. beam type relay. It consist of an to trip iron armeture \& a balanced beam. \rightarrow Under normal condition the current through the relay $\operatorname{coi}^{\prime}$ is such that the beam:. \&s at in the Horizontal position.
from armeture

\rightarrow But when a fault occur the current through the relay coil becomes greater then the peak up value \& the beam is attracted to closed the trip ckt this causes the opening of ckt breaker to isolate the faulty section.
2. Electromagnetic Induction type relay:-

* This type of relay operate on the principle of the electromagnetic induction.
\rightarrow This type of relay mainly used for the purpose of $A C$ quantify.
\rightarrow This relay. basically operate when an alluminicu, disc beth 2 alternation magnetic field which. has same troquency but separate phase displace. mint bet each other to rotate the disc.
* More is the phase displacement there will a. more torque produced as the disc.
\rightarrow The following 3 type of structure commonly used for obtaining the phase dibberence in the bluctus \& hence the operating torque in the induction relay this are:-
i. Shaded pole structure
ii. Watt-hour meter/double watt structure
iii) Induction cup structure.
is Shaddel pole structure:-
\rightarrow The general arrangement of shaded pole structure in shown big.
\rightarrow It consist of an alliminium disc which is. seed to rotake in the air gap of an electro magnet.
$\rightarrow 1 / 2$ of each pole is surrounded
 by a copper band which is known as shading ring
\rightarrow The alternating flux is in the shading portion will produced. the current in the ring lays behinal the tux '\$4' in the unstiadded portion by angle.
' α ', so the torque produced is given by
$T \alpha \phi_{s} \phi_{u} \sin \alpha$
\Rightarrow The tuxes ' ϕ_{s} ' ϕ ' ϕ_{4} ' is directly proportional to the current ' I ') in the relay coil.

$$
T \neq I^{2} \sin \alpha
$$

$I \alpha \phi_{c}, I \phi \phi_{u}$.
ix) Watt-hoar meter structure:-

\rightarrow It consist of arrange to rotate freely beth. the pole of 2 electromagnet. The upper maget carries 2 winding i.e. the primary \& secondary. \rightarrow The primary winding carries the relay current while the secondary winding is connected to the auinding of the lower magnet.
\rightarrow The primary current induced emt in the secondary word \& so current (I_{2}) circulate in it the $\operatorname{blux}\left(\hat{p}_{2}\right)$ induced in the lower magnet by the current $\left(T_{2}\right)$ in the secondary winding of the upper magnet.
\rightarrow Hex ' ϕ_{2}^{\prime} ' lags behing the ' ϕ_{1}^{\prime} 'by an angle ' α ', the 2 fluxes ' ϕ_{1} ' \& ' ϕ_{2} ' delfering in phase by ' α '' which is produce the reg torque on the disc.
\rightarrow The torque produce is proportional to ' $\phi_{1} \phi_{2} \sin \phi_{1}$.
\rightarrow An important teatureq of this type of relay is that its operation can be controlled by opening or closing the secondary wind ckt, iii) Induction cup structure:-

\rightarrow The construction of this type of relay is similar ta the construction of Induction motor.
\rightarrow The stator wand is supplied from the actuating quantity.
\rightarrow The rotor core if kept stationary only the rotor conductor portion being. move freely.
\rightarrow The moving element is a hollow cylinder rotor which turns on its exceeds.
\rightarrow The rotating field is produced by 2 pair of coil on the 4 -poles.
\rightarrow The rotating tied induced the current \& provided the necessary torque.
\rightarrow If $\phi_{1} \& \phi_{2}$ represent the flux produced by the respective pair of coil.
\rightarrow Then the torque produce if proportional to $A_{1} i_{2}$ sind. where, $\alpha=$ phase difference bet the 2 blur
\rightarrow The induction cup structure is more efficient torque producer, than the shadded pole or the walt-hour cup structure.

* Important term:-
\Rightarrow Peak-up current:- It is the minimum current of the relay \cos il at which the relay start to operate. It is expressed in Ampere.
\Rightarrow Current setting:- A relay can be made to operate at different peak-up current by providing tappings in the operating coil, this is known as current setting value of each tap. For over current relay taping of so\%, te 200\% are provided with the tap ot 25%.
* Peak up current $=$ rated secondary current of CT X current setting.
Ex:-An over current relay having a current setting of 125% \&s connected to a supply through a CT. of $400 / 5$, then peak up current $=5 \times 1.25=6.25$.
\Rightarrow Plug setting multiplier (PSM):-
\Rightarrow It is the ratio fault current of the relay coil to the pick up current.

$$
\text { SM }=\frac{I_{\text {boult }}}{I_{\text {pick up }}}=\frac{1 \text { Itault }}{\text { rated 2ndary current of CTXCS }}
$$

\Rightarrow Time setting multiplier (TSM):-
\rightarrow A relay con be adjusted the difference operating time this adjustment is known as TSM.
\rightarrow The TSN is multiplied with the relay operating time VS_{S} PSM time; Get the actual operating. time.
\rightarrow TSM generally expressed in second,

* Differential Relay:-
\rightarrow This is the relay which operates the phosor difference of the 2 or more similar electrical quantity exceeds Q predetermine value.
\rightarrow This type of relay if used where more sensitivity of the operation if required.
\rightarrow Depending upon the actuating quantity the ditberentian relay can be divided into 2 types.
$\pm \rightarrow$ current balance protection system.
$2 \rightarrow$ Voltage balance protection system.

1) Current balance protection system:-
$\rightarrow A$ bare of identical CT are used on either side of the protected system, the 2ndaay of $C T$ are connected on series in such a. Way that they carry the same current e in the same direction.
\rightarrow The operating coil of the over current relay is connected, the CT secondary ckt. To bad 200011 an lion \rightarrow Under normal operating condition a normal current blow os through the both the CT. i.l. the current blows through the 2 C.T. are equal
\rightarrow As the current ut the 2 ci. are same then is no current blows through. the relay. coil so the relay cant be operate.
\rightarrow If a fault occure the secondary current of $C T$ are not equal i the current thou through the relay will \& then the relay can be operated * Dicabiartage:-4y Exactly identical CT reps.
ii) The accurate matching, of canst be achive due the pilot cit impedance.
2) Voltage balance protection system:-

I In this scheme of protection system te similar IT are connected on either end of the protected system by meany of pilot wire.
\rightarrow Under normal condition equal current blows through the primary. wind of the $C T_{2}$. Therefore the 2 nero voltage of the \& $t 1$ t are balanced te each other c no currents blow through the relay operating current in ". prot
\rightarrow When the fault occuren the protected wnesthe 2 primary of the C.To will deffer from each other $\&$. the current Hows through the relay operating will which close the trip ckt.

* Difference type of functional relay:-
\rightarrow Relay can classified into the following type accorating ta there function.
i_{0}° Inductor type over current relay
iii. Induction type $\frac{\text { reverse }}{\text { direction }}$ power relay
iii. Distance relay
iv. Differential relay

1. Transtay relay
i) Induction type over current relay (Non-direction):-
\rightarrow This types of relay operate on the induction prindiple. This relays are used on $A C \quad c k A$ only \& can be operate for the boult current Hows in either direction.

* Construction:- of From CT \longrightarrow of tree ta rotate, In beth the poles of 2 electromagnet ie. upper \& lower magnets
\rightarrow The upper electromagnet has the 2 and i.e. primary \& secondary and.
The primary wind iss connected to a secondary of a CT in the line \& is tap at a intervals.
\rightarrow The tappings are conn to a plug setting by which the no. of active turns of the relay operating. coil varying for giving the desire carrel. setting.
\rightarrow The secondary wand is energized by induction from primary wand. \& the secondary word it connected in series with the wand it the lower magnet. The controlling torus if provide by a spring control.

Operation:-
The Tiblecting torque on the alluminium disc is set up due ta the suduction principle, this debleeling torque if opposed by the controlling torque which if provided by the spring.
\rightarrow Under normal operacting condition the controlling troque is greeler than the deflecting forque produced by the relay coil so the aluminium disc is remain stationary.
then the bault occur the currents on the protected ckt exceed s, so the deblecting torque becomex. greater thain controlling torque, so the disc rotates. , When the disc has rotated the trip ckt closes \& operate the C.B, which isolate the baully section. \%ynduction type direction power relay:-

\therefore This type of relay operate on the power in the ckt close in specific direction.

* Construction:-
\rightarrow It consist of aluminium disc which by tree te rotate in beth of poles of 2 electromagnet. i.e upper \& lower electro-magnet,
The upper electro-magnet carries a winding
(called potential vil) on the control limb which is connected through a PT fa the voltage source The lower magnet a has a separate winding Called current coil) which is connected to the secondary of CT in the limb which is to be protected.
"The current coil is provided with a no. of tapping to provide dibterent current setting.
4 The controlling torque is provided by the spring control.
* Operation: -From the phasor diagram the blur ϕ_{1} due to the current in the potential coil will be nearly 90° lagging behind the applied voltage ' V '.
\rightarrow The flux ϕ_{2} due to the currents coil will be nearly in phase with an operating current 'II?

$$
\begin{aligned}
& T \alpha \phi_{1} \phi_{2} \sin \alpha \\
& \alpha V I \sin (90-\theta) \\
& \alpha V I \cos \alpha
\end{aligned}
$$

$T \alpha$ power in the circuit.
\rightarrow It is clear that the direction of the detecting torque on the disc depend, upon the direction at the power flow in the i kt.
\rightarrow When the power on the cite flows on the normal direction the relay inoperative.
\rightarrow When the boult occur the direction of current reverse, this reverse. the direction of diflecting torque in the disc
\rightarrow When the reverse deflecting torque becomes surge the dice rotates in the reverse direction \& the moving contact close the trip oct, this cause the operation of $C B$, which disconnected the faulty section.

- Induction type directional overcurrent relay:-
\rightarrow The directional power relay if on suitable tor used as a protective relay under the short ckt condition.
\Rightarrow when short ckt occur in the system voltage tally to a lower value of there may be insubticient torque difficulty is overcome in the directional over current e relay which. is independent of system voltage \& power factor.

* Construction:-
y It consist of 2 relay element ie. directional element non-directional element.
$l \Rightarrow$ Directional element:-
\Rightarrow It i\& essentially a directional power relay which operates when a power flow in specific direction
\rightarrow The potential element of this element is connected through a PT
\rightarrow Curoiente coil is the element if enerzied through a CT th's winding if carried over the upper
magnet of the non-directional element.
\rightarrow The trip contact (1\&2) of the directional element are connected in series with the secondary oct of the over current element. Therefore the direction, element must operate bust ie. (contact $1 \& 2$ should close) in order te operate the over. current element.
*Non-directional element:-
\rightarrow It is an over-current element similar ta a non-directional over current relay.
r The spindle of the dice of this element carries a moving contact which closes the trip ext contact abler the operation of directional elements.
* Operation e-
\rightarrow Under normal operating: condition the power flow. on the normal direction. in the cit,
\rightarrow So the directional power relay does not operate therefore the aver-current element does not operate.
\rightarrow When a short ckt occiure, there is a provision for the current or power bo blow in the reverse direction, therefore the disc of the upper element rotate which closes the contact 1 \& 2 , this complete the ckt for over-current relay.
\rightarrow So that the disc of the arercurrent relay rotates \& closes the trip ckt, this operates the ct breaker which isolate the faulty/ unhealthy section.
* Types of Protection:
\Rightarrow When a fault occurs on any part of electric power system it must be cleared quickly in order to avoid damage or intentererence with the rest of the system.
\rightarrow The protection scheme iq divided into 2 classes these are ${ }^{\circ}$) Primary Protection
wi.) Backup "
it Primary Protection:-
\rightarrow If i\$ the protection scheme which is design: to protect the components party at the power system.
\rightarrow The fig. shows each line has an over current relay that protects the line,
pi ft a fault occurs on any line it will be cleared by its relay \& ct breaker. This from the primary or main protection. \rightarrow However sometimes faults are not cleared by primary relay system because of trouble with in relay wiring system or breaker under such cond? back up protection required.

Main bus

iss Backup Protection:-
\rightarrow It is the sewed line deftence in case of - failure of the primary protection.
\rightarrow It is design to operate with sufficient time delay so that primary relaid will be given enough time to function,
\rightarrow Fig. shows that, Relay 'A' provides back up protection for each of the bour line.
\rightarrow It a line fault is not cleared by its relay and breaker, the relay ' A ' will. operate after a definite time delay and clear the fault.

DT-DC DO3|Q $\{$ Protection of Electrical power // Ch-6 II equipment and lines $\}$
\rightarrow The electric power system consist ot several equipmerte \& these are alternator, $f(6)$ busbar, transmission line \& other equipments.
\rightarrow If is desirable \& necessary to protects each element from a variety of tault conditions.

* Protection of $t(1:-$ The $t 1-q$ are the static device and fotaly enclosed and generally of l immersed:? there is a chance of saith occuring on them. so, this is neccessity to provide the adquite to automatic protection for fIG against any possible fault.
\Rightarrow Common tot twat:- The power tit may suffer from; -
\rightarrow open ckt, over heating and short oct et. \rightarrow An openckt in 1ϕ of a 3ϕ th may cause undesirable heating. On the occuras go such truth The $t I G$ can be disconnected manually from the system.
\rightarrow The short ckt on the $t / 1$ arise ccrabel from detoriation (loss) of insulation due ta over heating. When aninternal fault occur the flt must- be disconnc quickly from the system.: the relay protection is neccessary or internal soult.
\Rightarrow protection system for t16:- The principle relays and systems used tho protections are; 4 Earth balt relay \rightarrow (Providing the protection, against are fault only.

Hover I relay - Providing the protection against phase to phase baulk \& over loads, 4 Differential system. or circulating current system. (Providing protection against both earth \& phase fault) (Bucholz relay- (Providing protection against slow developing bawl such as insulation bailace of the wand, cone. heating, fall of oil level'?
 D t-11/03/200
\geqslant This relay. is a gas actuated relay installed in iata 07 immersed $t / 5$ for the protection of all kind of slow developing boult, \rightarrow It is used the give an alarm in case or slow developing boult in the f / t and it can be disconn ${ }^{c}$ from the t / t in the event of severe internal boult.
rIt is usually installed in the pipe connecting ta the conservator to main tank.
\rightarrow The buchholy relay. if used in the of inmarsid if having the rating an excesob 75 siv * Construction:-.

It takes the form of a domed vessel placed in the connecting pipe beth the main tank \& conservator.
\rightarrow It has 2 element the copper element consist of a mercury, type sw attached to a blows
\rightarrow The lower element contain a mercury switch mounted on a hings type flap located in the direct path of the blow of 7% from the 46 the the conservator tank.
\rightarrow The upper element closes an alarm ct during the slow developing slot where as the lower element is arrowing te trip the ct breaker in case of severe fault.

* Operation: - It case of slow developing fault with in the $t[6$ the heat dare to the fault causes decomposition of some tho oil in the main tank. The product of decomposition containe more than 70% of the Hyotrogen-gas.
\rightarrow The H -gas io in light weight so it alarags totes to go info the conservator \& in the process gets entrapped in the upper part of the relay chamber.
\rightarrow When a preheateromind amount ob gas gece
accumulated it exerts sufficient presser ion the. I bloat en ese it to tilt. cove) and close the mercury s/w attached to 2 Lt : This complete the alarm ot fa sound an alarm.
7 If a serene, fact occur in the f 1 b an enourmous \sim seamount of gas in generated in or main tank, \& the oil in the main tank rushes (copal) towards the conserructor via. The buchiolys, relay and in doing so fill the hap to : dose the contact of mercury slue. This complete the trip echt to open the ckt breaker whicontrolling the E / F.
Advantage :1 It is the simplest form of $t 16$ protection. incipientelslow developing) boult 2. It detect. incipience (slow developing in of at a
stage much earlier than othe form stage procyon.
=DisadVantage:-

1. It wan only used with oil immersed t / σ 1. It wen only used conservator tank, fault below oil
equipped worth can detect only
Qi The device $1 t$ Dt-12/03/20
level in the $t(t, \cdots \cdots \quad \therefore t-12 / 03 / 20$ * Earth baielte or leakage protection:-

\star An earth fault usually involve a
Power t / t partial break dow in of cold insula
to earth \& the earth fault may $\longrightarrow \mathrm{cts}$ considirable dainage before If derelope the short che \& remove from the system. \rightarrow Under this case it is profitable fo emploge earth fault relay in order to ensure the disconnc of earth boult in the early state
\rightarrow An earth boult relay is essentially an over current relay $\&$ it is the method which provide the protection against earths fault in a tit.
\rightarrow In this method the 3 lead of primary ind of the power $1 / 6$ are taken through the core of a current tit.
\rightarrow The operating coll it the relay is conns fo the secondary conn of the currestetis,
\rightarrow Choler normal condo the vector sum of The 3ϕ current if zero. \& there is no resulting flux in the core at the currentetts \therefore no current blows through the relay \& if remains inoperative.
i In the occurrence of an earth boult the vector sum of $3 . \phi$ current is no longer zero \& the reallant current set up blur in the core of the CT which induced EMF in the secondary cone this energies the relay $\cos ^{\circ}$ ($\left\langle a^{\prime}\right.$ trip the ckt breaker and disconnect the favilty $t / 6$ from the system.

* Differential protection system or circulating current system:-

\rightarrow The big. show the merk-price circulating curvet scheme. For the protection of a 3ϕ delta -della. tit ogainest phase to ground k to ϕ tackle.
t The CT\& of the 2 side of the th are conn in star this compensule for the ϕ dieter beth the power $t, 1 t$ primary \& secondary.
\rightarrow The CTs on the 2 sides are conn by pilot 1 wires \& one relay is use bor each pair of. $C T$. During the normal ope. condn the seconds. of $C_{T} \%$ carry identical current.
\therefore The current entering \& being the pilot wire at both end are same \& 90. .t.
current How through the relay.
\rightarrow If a ground $\& \phi$ to ϕ boult oceare the current in the secondary side at of will not same and differential current Howingeg through the relay ckte.
* Protection of albermator:-
\rightarrow It is desirable \& necessary fa provide the protection against the wide range it boult which may occur in the modern generating plant. Some of the imp. fault which may y cure on the alternator are:-
is Facture of Prime-mover
in Failure ot field winding.
iii) Over current

省 over speed
ny over nollagre
wily unbalanced loading
vic Stator cond boult.
\rightarrow The stator cone boult are the most dongeorigy which may cause damage to the expensive m / c. \therefore automatic protection necessary ta clear such fault in order ta minimize the damage
t For the protection of alternator against such fault, differential protection also. known as merz-poice system is meroz commonly employed
\Rightarrow Differential protection of Alternators-Dt-B1osk 1
\rightarrow The most common system used for the
protection of stator and fault employed circulating current principle.

yIn this scheme current at the twa end of the protected section are compared.
4 Under normal ope. conan these currents are equal but in case of taulte there may be difference in current, \& this resulting distr venial current pass through the operating. coil of the relay. Then the relay close its: contact te isolak protected V system. section from the
\rightarrow This form of protection is atsu known as merz-price circulating current scheme.

* Schematic arrangement:

The fig. shows the schematic arrangemes \therefore ot differential I protection for a 3ϕ alternator.
\rightarrow Here the identical current tit porter CT 1 \& CT a are placed on either side of each phase of the stator winding.
r The secondary wad of each set ot CT are conn in star and the two neutral point \& the corresponding terminal ob the 2 star group being connected together by meany of 4 core pilot wire.
\rightarrow Thus there is an independart path for the \mathcal{D}. circulating in each pair of the CT \& the corresponding pilot wire
\rightarrow The relay coils are conn in star the neutral point being conn the the CT common neutral \& the outer ends are connected each of the x 3 pilot wire.
\rightarrow The relays are conn across the equip-potertial point of the. 3 pill an ire bidhesepoint are naturally located at the middle ot the pilot? cure.

* Operation:- Under the normal operating cone the current at bolted end at each wind will be equal \& hence the I ate secondary of 2-CFs. connected in any phase well also be. equal.
n there is a balanced circulating current in "the pilot wire \& no current blow through the relay 100%.
\rightarrow When an earth fault or phase to phase boult occur the differ arriente blowing through the relay ct \& then the relay operatesta trip the ckt breaker.
\rightarrow Suppose an earth baulk our ion phase
' R ' due to break down of it insulation, to earrfy as shown in fig. the I in the ebbected phase (R) will How through the wore \& frame. of the m / c ta earth.
\rightarrow Then the ckt. being. competed through the neat or, earthing R. The I in the secondary at the fine G in phase \mathbb{R} will becomes unequal i and the difference of the 2 current cull How through the corresponding relay $\cos \left(\left(R_{1}\right)\right.$ \& then the relay operated the trip the ckt breaker.
* suppose now a short ct fault occurs beth the phase Y \& B as shown in bis. The Is circulate through the neutral end of the 2 word and through the boult as shown by the dotted arrow.
\rightarrow The 1 in the secondary of the STy in each effected phase (Y \& B) will becomes unequal \& the differ I will blow through the operating coils of the relays $\left(R_{2} \& R_{3}\right)$ conn in these phase. Then relay dose the contact of trip coil the close the ckt breaker.
* Balanced earth boult protection system :-

In small size alternator the neutral \& the 3ϕ coney are. conn internally foe a single terminal, \therefore it is not possible ta ese the. merz-price circulating I system, be dz there are no basilifies to accommodate the neccessan, CTs in each phase wind.

*) Schematic arrangement:- The big. shows the schematic arrangement of balanced earth fault. protection for a $3 \varnothing$ alternator.

* If consist of 3 line. $C T$, one mounted in each phase, having their secondary conn in Hel with the single CT in the conductors joining the star paint of the alternator ta earth.
\rightarrow A relay is conn c across the CT seconelary.
\Rightarrow operation:- Under normal operating conal! the I Homing. th the alternator leases \& hence the I. flowing in the secondary of the line CT aral fo zero and nv I. blows through the relay col.
\rightarrow Under this condo the I in the neutral were. is also zero if develope at $F \overrightarrow{2}$ aitch is external the the protected zone the sum of the I at the terminal af the alternator is
exactly equal to the T in the neutral won nc b hence no current blow of through the relay: :
\rightarrow When a earth balt ocuir in FI or with in the protected zone, these current will no longer equal \& the differential D blow th through the: operating coil of the relay $e^{\text {the }}$ relay then close its contact fo disconnect the alhernaly from the system.
* Protection of busbar:-

The busbar $\&$ transmission line are the impo. element of the ele power system \& req the 'immediat er protection against the. possible fault occurring on them.
\rightarrow The busbar in the generating station \& substrates form an imp. link beth the incoming and outgoing act.
\rightarrow If the fault over in a busbar it can damage the incoming \& outgoing section.
\rightarrow The busbar zone for the purpose ot protection include not only the busbar themselt but include the solacing, s/w, ckt breakery are used. In the event or fault on any section of the busbar all the ckts equipment cane fo that section must be trip fo give the complete isolation.
\rightarrow There are 2 must commonly used methods for the busbar protection are:-
(a) Differential protection
(b) Fault bus
a) Differential protection:- The basic method on busbar protection if the differential scheme ot protection.

In this scheme the current entering \& leaving the bus ar tolalised.
\rightarrow During normal operating. condition the sum on incoming current \& outgoing currents is equal

\rightarrow When a fault occurs, the boult e current e produces a differential current to operate a relay.
\rightarrow The fig. shows the single line diagram of differential protection scheme
\rightarrow The busbar ls bed by the generator and supplies load to twa lines.
y The secondaries of CT in generator load, line 1 \& line 2 are conn in parallel.
\rightarrow The protective relay if connected across this parallel connection.
\rightarrow Under normal cond". the sum of the current e entering the bus it equal te the sem of the current leaving from bus and no currot thous through the relay.
\rightarrow If a boult occurs wither the protected zone the current entering the bus will not equal to the current leaving the bus,
\rightarrow The difference of these current e cull blow through the relay \& cause opening of Generator. Ckt breaker \& each of the line ct breaker.

* Fault bus protection:-
\rightarrow This is design to provide the protection agrant! the earth fault.
\rightarrow This can be achived by providing earthed metal barrier surrounding, each conductor, throughout. its entire. length in the bus structure
\rightarrow In this arrangement, By directing the blow of earth fault current, it is possible to detect the boult of determine their location this type of protection if known as fault bus protection. 7 The metal supporting structure or taulf buy if earthed through a CT. A relay is connected across the ceconderry of $C T$.
\rightarrow Under normal operating condo. there is no current blow from boult bus te ground so the relay remain inoperative.
\dagger When a boult occur a connection beth a conductor b earthed supporting structure will result in current flow fo ground through the fault bus which causes the relay to operate.
\rightarrow The ope. of relay cull trip all breakers connecting equipment to the bus.

* Differential pilot wire protection:-
* The differential pilot wise protection is based on the principle that curer normal and the cure entering one end of a line if equal be that leaving the other.
\rightarrow But when fault occurs beth the 2 ency, the dills beth incoming of outgoing current How through the relay which operate the ckt breaker to collate the barely line.
7 There are 2 types of differenential protection scheors 1) Mere - price voltage balance system. 2) Transly scheme.
1). Merit -price role rage balance system:-

\rightarrow The fig. shows the single line diagram of merz-price voltage balance system for the protection of a 3ϕ line.
\rightarrow Selentical current tiny are placed in each phase at both ends of the line.
\rightarrow The pair of C_{7} in each line if connected in Series with a relay in such a way that weeder normal wound ${ }^{n}$ their secondary voltage are equal and in opposite direction.
Y Under normal pondifition current entering the line at one end is equal to that leaving it at the other end. Therefore equal of opposite
voltage are induced in the secondaries of the to, at the 2 end of line so that no current klousp through the relay.
\rightarrow It the fault occurs ate point f on the line this will cause a greater current the blow through $C T_{1}$ than $C T_{2}$
$\Rightarrow \therefore$ secondary voltage become unequal \& circulating current flows through the pilot wire o relay.
\rightarrow The ckt breakers at both ends of the line will trip out and the faulty line will be isolated.
* Advantage:-
is This system can be used for ring main as well as parallel feeder.
int This system provide instaneous protection for ground fault.
* Disadvantage -

1) Accurate matching of current $t 16$ is very
essential.
ii) If there a break is the pilot wire ekt the
in operate.
, system will not operate.
iii) This system is very expensive
ivy This system cant be used for line voltage beyond 33 KV because of constructional difficulties in matching the current transtormer.
ch-8 Static Relay

* Deft ${ }^{\text {ri s }}$ - The relay which does not contain any moving parts $i \$ 1$ known as static relay. t In such type of relays the $0 / P$ is obtain by the static component like magnetic \& electronic ct.
\rightarrow The relay which consist static \& electromagnetic relay also catted as static relay because the static unit obtain the response \& the electra magnetic relay is only used for switching ope.
\rightarrow The component e of the static relay is shown in the figure below.

\rightarrow The ip of the $C T$ is connected fo the transmission line and their olD if given the rectifier.
\rightarrow The rectifier was rectiting the i / p signal \&: pass it to the relaying measuring cent,
\rightarrow The rectifying measuring unit has the comparates level detector $\$$ logic circuit,
\rightarrow The \% signal from relaying unit obtains only when the signal reaches the threshold value.
\rightarrow The old of the relaying measuring unit act $\$$ as $2 i p$ ta the amplifier.
\rightarrow The amplifier amplifies the signal \& gives the op ta the o / p device.
\rightarrow The op device activate the trip coil only when the relay operates.
\rightarrow The output device is activated \& gives the tripping command to the trip coil.
\rightarrow The static relay only gives the response to the electrical signals.
\rightarrow The other physical quantity like heat, temp n? etc. if first converted into the cenologue and digital electrical signal \& then act as an input for the relay.
* Advantage of static relay:-
\Rightarrow The static relay consumes very less power.
i The static relay gives quick response, long life, high reliability \& accuracy.
\rightarrow The reset time of the relay is very less.
\rightarrow The relay amplifies the $2 / p$ signal which increase their sensitivity,
\rightarrow The change of unwanted tripping is less. in this relay.
* Limitations of static relay:-
\rightarrow Special maintenance is provided ta the components
\rightarrow The relay if easily affected by the high voltage surge.
\rightarrow The working of the relay depends on the electric component.
\rightarrow The relay has less over-loading capacity.
\rightarrow The static relay is more costly.
l The construction of the relay is easily affected by the surrounding inferterence.
* Instantaneous Over - current relay:-

This relay is one in which no \Rightarrow intentional time delay $\& \%$ provided for operation.
\rightarrow In such relay, the relay contact close immediately after the current in the relay cot exceeds.
\rightarrow In this relay a magnetic core is wound by a current wi l
\rightarrow A piece of iron is so fitted by hinge support \& restraining spring in the relay
\rightarrow When there is not sufficient current in the col, the no contact remain open.
\rightarrow When the current in the vil crosses a preset value, the attractive force becomes enough fo pull the iron piece toward the magnetic core of therefore no contact get closed.
\rightarrow This relay is referred as instantaneous over. The current in the coil get higher than the preset current.
\perp PRDTECTIONA AGIINST ODER NOLTAGE AND RIGHTENITNCY
voriage sunge,
\rightarrow The sudden tire is roltage for veny short dinecrion on the poiven sigtien is anown as voltage stunge ars thansicint voliage.
\rightarrow The tronsient ole serage ane inf tempirnony natere. lie $\{$ exfit forn a rring shont pentod of yime

 ning strixing to a freconsmissing line.
Caure of ovex voltage to
$\rightarrow \mathrm{m} \mathrm{m}$ mad
The cacue of oven voltage of a powin system may be derived into main categonicl.
i) Intennal cause
ii) Expennal cacose.

1) Intennal cause 1 -
\rightarrow The intennal cause do not produce sunge of large. magnetcede.
-t Type sunge deco to intennal cause inencase the syisem rootrage to nofre nonmal vorrage.
\rightarrow The internal cause of ores vorrage on the power syifiem san bie pratecece by the suddenly change in) Cxy condision.
Sueficting sunge $1-$
The oren volierge produce on the powen system dee to suritiching operaiting are known as suifcring surge.
n) Incase of cenload whe 1 -
\therefore Dueving the scesfach opencution of un loaded line tanreling wave are sel up lathich proncerce oren ratrage on the efroe.

\rightarrow considen a ennoaded ishe connect the vartage socencer wetien the cenlodied eine conneeted to the vallaye ware if set "p cestich thater along the sine.
$->$ on leaining the lenmitiky point h' if is meplected becex to the seeprly cestl) out changer ap Mr isgn thise cause rollage docesped i.e on the eine becomel cerilise the nonmal value.
b) In care of loaded eine 1 . mm m mm m
$)^{-1}$ The oven voltage wein bie also prodisice deening the sueftiching openction of laladed line.
-) suppose a loaded eine is interncepted ithes ceffi be set up the high vartage.
Ccennent chopping n-
\rightarrow when the bneaxing cow cument weith afn b/as: ext bnecaken, the powerfeer veicnization effect of arll $1, a s s^{c}$ cause the ceennent to fall to 'zeno' befor the matcene curnent 'zeno! Thise phenominen Me cauped ceernent chapping i prodeece thansicnt roltage acrose the incaser contcelt.
\rightarrow The oven voltage dece to ceenment chopphing are prifiented by the mestirtance. Scerfering.

Insupation faticune x -
-) The mast common case of insulailon fajiune H the grounding of conduction, which may catce over vortage on the systern.
Resonance :-
mamm

- P Resonanie of rectanical sysiens orcunce when indectitre nenctance of the CNI equeal to capacitive necupance.
\rightarrow Cenden acionance cond" the impedernee of the c.Kt is equal mesistance of the c.it i pontry
 (i) electuitar system.
ii)External cause

Lightning II.
An epernke dischange betn cloced and eanth benn cloude on Seot ${ }^{n}$ the charge. Eentras of the same cloced is knowen as lightining.
\rightarrow uightring is a huge spack and taxes plave wosen couds ane charged to suen a bigh porential, nefth reepect to eanth on a neighbouning cparth thes the dielective strength of ncighouring. medicen cafre) th Nectnoyed.
-1 Thene ane sevearl pheonies cxist to explutinn how the coocede arcuine charnge the most accepted one \&s that deceing the cep reuts) of woum moist aire from eantil, The fricylon bed? the ain and the tiny particies of waten cauces cy churdiding up of changes.

Thehen drop of waien formed, the larger drop becomes positively changed of the smatlen drops becomes negatively charged.
-) hehen the dropp of water accumcepate, they form cloudt, i hence cloud may possese etheren a postitive an a negative change. depencing cepon the change of drop of waten they contarin.
-b The change on a claced may became so lange thouy if maxy dischange to anothen claced mon to eantis 1 we call this discolvenge are cightrinty
Mechantsm of eighining dischange 1 mum on stom romith
-) heten a changed cloced passes oren the earth, it indecees equel $\{$ opposile charege an the earth.
\rightarrow The figuene showe a negatively changed cloud Induces a postirive change on earth.
$-\lambda$ Ar the change aequified by the cloced incre. -ases, the porenticy diffenence betn cloced i? earth increcepes and theneforme potential gradient on the afn inencates.
-1 whipen the poienticey gradient of sabficient ($5 \mathrm{kr} / \mathrm{cm}$ to $10 \mathrm{kr} / \mathrm{cm}$) to bnear down the scenkocending atre the eigntning stroke i) Scanntantry.
 ceadert
(i)

(ii)

(Fi 1)

Types of eightinfing sinoke IImin minn?

Thene cene fleo main waye fis uebilen a riglifning staike the power system. firese ane
(i) Dfrect strore
(ii) Indineel stnoke

Dinced sinoke
man man
In the dinect eightning strares, the cloced artein) a lange amount of change and induces an oppo. sitge. change on tatlen objeets sues as temples, cherenches eqc.

- λ weben the mentensity of epectiosiatis field beromes. scepficiently .gncret to oontfe the nerightominfing alire. the aft breax down and wischange fages pirir. betn the cloced and the obicel.
-1 scees types of dischange fape a longtimee to produce and ty strifies. The nighest and the most shapply pointed scellding.

Indinecy sinoks $11-$
Indineer stnoker nescerte froun the vecrnostatifulli:
indecied chatages on ther cimedectons ; derer 10% presence of changed cloceds.
 and endeces a mergetive chrrage an the efrace by epectnostatre indection).

- λ This negatire change. will be present only on the portion of the eine right cencen the cloud and pontion of eine away from it waill be positively changed as shown in fig.
\rightarrow The indeued tre changes reape slouly to earth r fo the Inscepator.
- - hehen the cloced discharge to canth on to anothen cloced the - ve charge on the withe for propayed as it cirnnot flow queicry to eantly oven the fincefaton.

Hanmfuel effect of lightning x. 7 man num No min
n) dinect on findineet lightning stroms al) a mansmission line prodeecer a steefromited (akse $\{f a l l$ shanply) vorage wave on the eine
\rightarrow The rootage of thes ware may retse from zere to peax ravue (abocet 2000 KV) in tus in decay to haif the peak ra/cue in $5 \mathrm{\mu s}$.
\rightarrow This secep fronted rollage ware weft fnitiate tnovelling waver along the esine on both dincertion).
<i) The travelling ware prodeceed dee to lightning seanges woill damage the finsermanes. and may a/so damage the poses
iii) if the treavenfing wave prodecesed dere to eightning hify the windings of a transformen on generator it may damage the equefmente.
iii) If the are fir fnitiated on any pant of the power system by the eighinfing stnoke, this are well setup reny distuabing oscillations th the eine, thls may damage othen equifment: connected to the erne.
Lightening Annester 1-

- a ughtening annester an a suefich device is a photective device which condact the high roltage $\overline{\mathrm{CS}}$ seenge an powen swites to grocend
\rightarrow It consist of spark gap in serice wots with a non-linean nestston, one end 'y the devi-- reper le connesied to the terminal of eqceipmens which th to be protected it the athen and te remected to the grouend.
$->$ The length of the guer so set the normal efine vertage rown't enoceigh to coscere an ase
-) The pmopenty of the non. (inear nesistance of thay its netirlance decnease ip voltage mername rice rensa.

 eanth proveriving the low mericaronce puth to the ground in thes lingy the exseer caronge on the efine due to the ricenge is harmbersly condecered to the amnesten to the gnocend.
Types of lightening Annester 1$\cdots \mathrm{mm}$ mans
There anc severap types of rightening annesten there are
i)Rod-gap Annesten
ii) trann. gap anncsice
iII) mesti- grep crenerien
ivy Expleersion lype annesien
vi valye type annesten
i) Rod-gap Airnesten
mm mm ~mm
\rightarrow It is reny shmple type of diverven i Ht ;) connsigy of two 1.5 cm nod waich are send of

Night angle with a gap in bern them.
\rightarrow are read is connected to the line cat \{ the other mod is connected to earth.
-4 cinder normal openaising condition the gap remain non. Condeceting, on the occunance of a high rallage on are ts produce 1 nods to the scenge cement is consucering to the cath in its way the excess change on the ene honnlessly condeceped to the earth.

efmitaifon 1-

\rightarrow After the surge fie oven the are for the gar of main tripped by nonmay supply voltage ne, th to large to Showy CKT on system.
\rightarrow The rod may melt on get damaged dee to excessive heat produced by the are.
-1 The cirmaring conan effect the phenfonmance of nod gap lightning annesten.
-) bee e to the above efmitatibn the nod gap annesten if only cued as a back ep paripectibn)
ii) In case of main annciter.

Horn gap Mrnesten -
CSI'f consist of two horn shape metal nod ARB CS cepenated. by a small ain gap.
\rightarrow The horne are so construcyed that the discance betn the two honne guadually Shere.
-ased fowand the top as shoun fn ffg.
-) The hornt ane mounted on the poncepeen firclato,
-4 One end of the horn ls connected to the efne through a nesistance ' R ' 1 a chare coil' ' R ' the othen end if grocended.
-t cendex ionmay openating condn the gap is noncondeceting i.e the nonmat is enselficient to prodeese the gap betn honnt.
\rightarrow on the occcenanee of iaren rottage an ance A_{s} prondeced lecth the honns.
\rightarrow The ane moves proynerrizely into the poritfons 1.A. 13. $^{\text {. }}$

At the postifon is the Nistancer betn the honne too lange for the voltage to maintaí, the eanth so the are ke exstingous.
pig

Adrantage
\rightarrow The ane is self cyeoning thenelone thre Fanty type of annestea dore'not cause shont cKy apten the seenge is
$->$ The lenies nesisfance helpe in einiting the ceranent to a pmant varcue.
\rightarrow The briolging of gaf by some exteniais agency on caume can nendrop the device cuelers i- Come thime of openation is comparatively long.
\rightarrow if consfst of a senies of merarice cyifindens fnscepaged from one anathen if Sepanated by small fintennal of ath gal.
\rightarrow The git cyirndene i.e (a) As connected to the elne I the othen comected to the grouend tincuegl, a series nesisfarce.
-y (enden nenmay cond" the nemmed seeprly volagege of cencefe to baraxidoon the gaps.
\rightarrow on the occecmance of oves roltage the bneax (onor) of the gaps betn ' n q B^{\prime}, arcems
\rightarrow The heavy cumnent aftere inmandolion wivill flawli to the eanth through the gay litn 'Apc'
-) wehen the seenge is oven the ane lictl) the 'B tor' goes out p any cunnent flousfong thaow the cincuit can be limfied by the two niristance.

- Thire arnestea can be emprosped wohene the system varage docsnot exceeds sa iv.
Dia

vivarre type Arnesten 1 m mim mm
-) Valre tejpe cancsied case the non-linecen nesition \rightarrow It consist of two pauts ane ls senics spant gap I second one k non-linearn nesistance dise on CS Scanned with
\rightarrow The non- ineare epements are conneeted in series wefth the spank gap

-1 The spanx gap consting concisting $T\} \begin{aligned} & \text { spark gap inading neri: }\end{aligned}$
a no.of inentical spank gap on T slant, series each gap consfit of two elecinode with a fixed gap.
-) The non- linear recisten dise ane Eanth.
Connected in series.
\Rightarrow The nen-eineas nesisten hare the property of ofitearing a bigh resisfance to the ceemnent :/aul when normay system rolrage is appeied Buy provide a low nesistance to fiow of high, scenge cunnent.
Th eenden nonmay cond" the syjsien rolrage is in sufficient to cauce the bincardown of aingap -s on occunance of over vortage an arc is prodeced \& the scenge eurnent condcected to eanth throxight the non-linear nesispance.
\rightarrow when the seenge R_{p} : overe the non-esineeen nesision -he provide high neristance to ctop the frow of Cernent.
Adrantage 1 .
$-\lambda \mathrm{H}$ provide veny effcetive protection agashst the sernge.
-) It opencepe veny rapisidy raring less than Isec,
B. Scanned with

Des-Advaniages 1 m mmion
\rightarrow Thene penpormance is adrensly effeeped by the entry of morsture. into the encloser.
Appeication 1.
m man
\Rightarrow This type of annesten ane genenally eur for the protection of impontance equipment in powen station openating on the rortage upto 220 kv on highen.

Surge Absorber.
\rightarrow The travelling carves setup on the tramemiscion bines by the surge may reach the terminals of the apparatus and carse flamage to 2%.

- To reduce it we use surge absorber.
\rightarrow A surge exbsorbere is a Protective device which reduce the steepness of wave front of a surge. by absorbing surge energy.
\rightarrow A conductor connected between the line and earth can act as a surge absorber.
\rightarrow The figure shows a capacitor ort ale surge. absorber. to Protect the transformer winding.

\rightarrow Since The recusance of a condenser is inversely Proportional to frequency, it will be lowat high frequency and high at love frequency.
\rightarrow Since The surge are of high frequency, the capacitor att us a short circuit and passes them. directly to earth.
\rightarrow Another e. type of surge absorber consist of a parallel combination of choke and resistance connecta-f ib Series with the line. As shown in fig.

The choke offers thigh reactance to surgefrequency $\left(x_{L}=2 \pi f L\right)$ The surges are therefore, forces to frow through the Resistance R where they are dissipated.

