Discipline – Electrical Engg	Semester 5 th No Of Days Per Week Class Alloted- 4 P	NAME OF THE TEACHING FACULTY- RINA RANI SOREN, LBA(ELECT.)	
SUB-EM LAB-II		SEMESTER FROM 01.09.2020 TO 01.03.2021	
WEEK	CLASS DAY	PRACTICALS	STATUS
1 st WEEK	1 ^{s⊤} day 2 nd day 3 rd day 4 th day	1. Identification of different terminals of a DC machine by test lamp method and multimeter method & to measure insulation resistance by megger.	
2 nd WEEK	1 st day 2 nd day 3 rd day 4 th day	1. Identification of different terminals of a DC machine by test lamp method and multimeter method & to measure insulation resistance by megger.	
3 rd WEEK	1 st day 2 nd day 3 rd day 4 th day	2. Dimensional and material study of various parts of a DC machine.	
4 th WEEK	1 ^{s⊤} day 2 nd day 3 rd day 4 th day	3. Plot OCC of a DC shunt generator at constant speed and determine critical resistance from the graph.	
5 th WEEK	1 st day 2 nd day 3 rd day 4 th day	4. Plot External Characteristics of a DC shunt generator at constant speed.	
6 th WEEK	1 ^{s⊤} day 2 nd day 3 rd day 4 th day	5. Study of Three point starter, connect and run a DC shunt motor & measure the no load current.	
7 th WEEK	1 ^{s⊤} day 2 nd day 3 rd day 4 th day	.6. Study of Four point starter, connect and run a DC compound motor & measure no load current.	

8 th WEEK	1 ^{s⊤} day 2 nd day 3 rd day 4 th day	7. Control the speed of a DC shunt motor by field flux control method & armature voltage control method	
9 th WEEK	1 ^{s⊤} day 2 nd day 3 rd day 4 th day	7. Control the speed of a DC shunt motor by field flux control method & armature voltage control method	
10 th WEEK	1 ^{s⊤} day 2 nd day 3 rd day 4 th day	8. Determine the armature current vs. speed characteristic of a DC motor	
11 th WEEK	1 ^{s⊤} day 2 nd day 3 rd day 4 th day	9. Determine the efficiency of a DC machine by brake test method.	
12 th week	1 ^{s⊤} day 2 nd day 3 rd day 4 th day	9. Determine the efficiency of a DC machine by brake test method.	
13 th week	1 ^{s⊤} day 2 nd day 3 rd day 4 th day	10. Identification of terminals, determination of voltage transformation ratio of a single phase transformer	
14 th week	1 ^{s⊤} day 2 nd day 3 rd day 4 th day	11. Perform OC Test and SC test of a single phase transformer.	
15 th week	1 ^{s⊤} day 2 nd day 3 rd day 4 th day	12. Determine the voltage regulation of a single phase transformer at different loads.	
16 th week	1 ^{s⊤} day 2 nd day 3 rd day 4 th day	13. Polarity test of single phase transformer and parallel operation of two single phase transformers.	