Subject name: CIRCUIT & NETWORK THEORY, 25.10.2022 TO 31.01.2023 Faculty: BASUDEV BARICK No of days per week: 5

Course Code :	Th-2
Theory :	5 P/W
Total Period s:	75 P/ Sem
Examination :	3 Hours
Sem :	3 _{RD} EE

Class Test	:	20 Marks
End Semester Exam	:	80 Marks
TOTAL MARKS	:	100 Marks

WEEK	PERIOD	ТОРІС
1st	1 _{st}	Voltage, current, power and energy
	2 _{nd}	Resistance, Inductance & capacitance as parameters
	3 _{rd}	Active, Passive, Unilateral & bilateral,
		Linear & Non linear elements.
	4 _{th}	KVL and KCL,
		Voltage division & current division.
	5 _{th}	Introduction to Magnetic Circuits
2 _{nd}	1 _{st}	Magnetizing force, Intensity.
	2 _{nd}	MMF, flux and their relations.
		Permeability, reluctance and permeance.
	3 _{rd}	Analogy between electric and Magnetic Circuits
	4 _{th}	B-H Curve
	5 _{th}	Series & parallel magnetic circuit
3 _{rd}	1 _{st}	Hysteresis loop
	2 _{nd}	Mesh Analysis
		Mesh Equations by inspection
	3 _{rd}	Super mesh Analysis Problems related to Mesh analysis
	4 _{th}	Nodal Analysis Nodal Equations by inspection
	5 _{th}	Super node Analysis Source Transformation Technique
4 _{th}	1 _{st}	Problems related to Node analysis & Source transformation.
	2 _{nd}	Star – delta transformation & related problems.
	3 _{rd}	Super position Theorem & related problems
	4 _{th}	Thevenin's Theorem & related problems
	5 _{th}	Norton's Theorem & related problems
5 _{th}	1 _{st}	Reciprocity Theorem & related problems
	2 _{nd}	Compensation Theorem & related problems
	3 _{rd}	Maximum power Transfer theorem & related problems
	4 _{th}	Problems related to Thevenin's, Norton's, Maximum power Transfer theorem.

	5 _{th}	Milliman's Theorem & related problems.
6 _{th}	1 _{st}	Review of A.C. through R-L series Circuit.
	-30	Solution of problems of A.C. through R-L series Circuit
		by complex algebra method.
	2 _{nd}	Review of A.C. through R-C series Circuit.
		Solution of problems of A.C. through R-C series Circuit
		by complex algebra method.
	3 _{rd}	Review of A.C. through R-L-C series Circuit.
		Solution of problems of A.C. through R-L-C series Circuit
-		by complex algebra method.
	4 _{th}	Solution of problems of A.C. through R-L, R-C parallel
		Circuits
	5 _{th}	Solution of problems of A.C. through R-L-C parallel
		&Composite Circuits
7 _{th}	1 _{st}	Power factor & power triangle.
-	2 _{nd}	Deduce expression for active, reactive, apparent power.
-	3 _{rd}	Series resonance & band width in RLC Circuit
-	4 _{th}	Q factor & selectivity in series circuit.
	5 _{th}	Problems related to Series Resonance.
8 _{th}	1 _{st}	Resonant frequency for a tank circuit.
	2 _{nd}	Poly phase Circuit
	3 _{rd}	Voltage, current & power in star connection & related
		problems
	4_{th}	Voltage, current & power in delta connection & related
		problems
	5 _{th}	Three phase balanced circuit.
9 _{th}	1 _{st}	Self Inductance
	2 _{nd}	Mutual Inductance
-	3 _{rd}	Conductively coupled circuit and mutual impedance
	4 _{th}	Dot convention
		Coefficient of coupling
	5 _{th}	Series and parallel connection of coupled inductors.
10 _{+b}	1.+	Problems related to above topics.
	2 _{nd}	Steady state & transient state response.
-	2	Response to R-L circuit under DC condition
-	3 _{rd}	Response to R-C circuit under DC condition
	4th	Response to RLC circuit under DC condition.
11.		Application of Laplace transform for solution of D C
⊥⊥th	⊥st	transient circuits.
-	2	Problems related to above topics.
-	∠nd	
-	3 _{rd}	Problems related to above topics.
	4_{th}	Open circuit impedance (z) parameters & related
		problem
[5 _{th}	Short circuit admittance (y) parameters & related
		problem
12.,	1.	Transmission (ABCD) parameters & related problem
<u>+∠th</u>		Hybrid (h) parameters & related problem
	<u>4nd</u>	Inter relationships of different parameters.
	110	

	4 _{th}	Inter relationships of different parameters.
	5 _{th}	Problems on inter-relationship
13 _{th}	1 _{st}	T and π representation
	2 _{nd}	Classification of filters.
	3 _{rd}	Filter networks.
	4 _{th}	Equations of filter networks
	5 _{th}	Classification of pass Band, stop Band and cut-off
		frequency.
14 _{th}	1 _{st}	Characteristic impedance in the pass and stop bands
	2 _{nd}	Constant – K low pass filter
	3rd	Constant – K high pass filter
	4 _{th}	Constant – K Band pass filter
	5 _{th}	Constant – K Band elimination filler
15 _{th}	1 _{st}	m- derived T section filter.
	2 _{nd}	Tutorial.
	3rd	Tutorial.
	4 _{th}	Tutorial.
	5 _{th}	Tutorial.