Subject name: CIRCUIT \& NETWORK THEORY, 25.10.2022 TO 31.01.2023 Faculty: BASUDEV BARICK
No of days per week: 5

Course Code :	Th-2
Theory $:$	$5 \mathrm{P} / \mathrm{W}$
Total Period s:	$75 \mathrm{P} /$ Sem
Examination:	3 Hours
Sem $:$	$3_{\mathrm{RD}} \mathrm{EE}$

Class Test	$:$	20 Marks
End Semester Exam	$: 80$ Marks	
TOTAL MARKS	$: 100$ Marks	

WEEK	PERIOD	TOPIC
1st	$1_{\text {st }}$	Voltage, current, power and energy
	$2{ }_{\text {nd }}$	Resistance, Inductance \& capacitance as parameters
	3 rd	Active, Passive, Unilateral \& bilateral, Linear \& Non linear elements.
	$4{ }_{\text {th }}$	KVL and KCL, Voltage division \& current division.
	$5{ }_{\text {th }}$	Problems related to above topics.
2 nd	$1_{\text {st }}$	Introduction to Magnetic Circuits Magnetizing force, Intensity.
	$2{ }_{\text {nd }}$	MMF, flux and their relations. Permeability, reluctance and permeance.
	3 rd	Analogy between electric and Magnetic Circuits
	4th	B-H Curve
	5 th	Series \& parallel magnetic circuit
3 rd	$1_{\text {st }}$	Hysteresis loop
	$2{ }_{\text {nd }}$	Mesh Analysis Mesh Equations by inspection
	3 rd	Super mesh Analysis Problems related to Mesh analysis
	4 th	Nodal Analysis Nodal Equations by inspection
	$5_{\text {th }}$	Super node Analysis Source Transformation Technique
$4{ }_{\text {th }}$	$1_{\text {st }}$	Problems related to Node analysis \& Source transformation.
	$2{ }_{\text {nd }}$	Star - delta transformation \& related problems.
	3 rd	Super position Theorem \& related problems
	$4{ }_{\text {th }}$	Thevenin's Theorem \& related problems
	5 th	Norton's Theorem \& related problems
$5{ }_{\text {th }}$	$1_{\text {st }}$	Reciprocity Theorem \& related problems
	$2{ }_{\text {nd }}$	Compensation Theorem \& related problems
	3 rd	Maximum power Transfer theorem \& related problems
	4 th	Problems related to Thevenin's, Norton's, Maximum power Transfer theorem.

	$5{ }_{\text {th }}$	Milliman's Theorem \& related problems.
6 th	$1_{\text {st }}$	Review of A.C. through R-L series Circuit. Solution of problems of A.C. through R-L series Circuit by complex algebra method.
	2 nd	Review of A.C. through R-C series Circuit. Solution of problems of A.C. through R-C series Circuit by complex algebra method.
	3 rd	Review of A.C. through R-L-C series Circuit. Solution of problems of A.C. through R-L-C series Circuit by complex algebra method.
	$4{ }_{\text {th }}$	Solution of problems of A.C. through R-L, R-C parallel Circuits
	5th	Solution of problems of A.C. through R-L-C parallel \& Composite Circuits
$7{ }_{\text {th }}$	$1_{\text {st }}$	Power factor \& power triangle.
	2 nd	Deduce expression for active, reactive, apparent power.
	3 rd	Series resonance \& band width in RLC Circuit
	4 th	Q factor \& selectivity in series circuit.
	5 th	Problems related to Series Resonance.
$8_{\text {th }}$	$1_{\text {st }}$	Resonant frequency for a tank circuit.
	$2{ }_{\text {nd }}$	Poly phase Circuit
	3 rd	Voltage, current \& power in star connection \& related problems
	4th	Voltage, current \& power in delta connection \& related problems
	5th	Three phase balanced circuit.
9 th	$1{ }_{\text {st }}$	Self Inductance
	2 nd	Mutual Inductance
	3 rd	Conductively coupled circuit and mutual impedance
	4 th	Dot convention Coefficient of coupling
	$5{ }_{\text {th }}$	Series and parallel connection of coupled inductors.
$10_{\text {th }}$	$1_{\text {st }}$	Problems related to above topics.
	2 nd	Steady state \& transient state response.
	3 rd	Response to R-L circuit under DC condition.
	$4{ }^{\text {th }}$	Response to R-C circuit under DC condition.
	$5_{\text {th }}$	Response to RLC circuit under DC condition.
11 ${ }_{\text {th }}$	$1_{\text {st }}$	Application of Laplace transform for solution of D.C transient circuits.
	2 nd	Problems related to above topics.
	3 rd	Problems related to above topics.
	4 th	Open circuit impedance (z) parameters \& related problem
	$5_{\text {th }}$	Short circuit admittance (y) parameters \& related problem
12th	$1_{\text {st }}$	Transmission (ABCD) parameters \& related problem
	2 nd	Hybrid (h) parameters \& related problem
	3 rd	Inter relationships of different parameters.

