SL.NO	MODULE/LECTURE	
1	I/1	
2	I/2	
3	I/3	
4	II/4	
5	I/5	
6	11/1	
7	II/2	
8	II/3	
9	II/4	
10	II/5	
11	II/6	
12	II/7	
13	II/8	
14	II/9	
15	II/10	
16	III/1	
17	III/2	
18	III/3	
19	111/4	
20	III/5	
21	III/6	
22	III/7	
23	III/8	
24	III/9	
25	III/10	
26	/11	
27	IV/1	

28	IV/2
29	IV/3
30	IV/4
31	IV/5
32	IV/6
33	IV/7
34	IV/8
35	IV/9
36	IV/10
37	IV/11
38	V/1
39	V/2
40	V/3
41	V/4
42	V/5
43	V/6
44	V/7
45	V/8
46	VI/1
47	VI/2
48	VI/3
49	VI/4
50	VI/5
51	VI/6
52	VI/7
53	VI/8
54	VI/9
55	VI/10
56	VI/11
57	VII/12
58	VI/13
59	VI/14
60	VI/15

Learning Resour

SI.No Title of t

1.	Higher e
	mathem
2.	Element
	1
3.	Text Boo
	Mathem
4.	Text Boo
	mathem

LESSON PLAN

ENGINEERING MATHE MATICS -III

3RD SEMISTER ,MATH & SC

TOPIC TO BE COVERED
i) Define rank of a matrix.
ii) Elementary row transformations to determine the rank of a matrix.
i) State Rouche's theorem for consistency of a system of linear equations in n unknowns .
i) Solve equations in three unknowns testing consistency.
i) Solve problems on matrices.
CLASS TEST -1
i) Introduction of linear differential equation
ii) Define Homogeneous and Non – Homogeneous L.D.E with constant coefficients
i) general solution of linear Differential Equations in terms of C.F. and P.I.
i) Discuss some problem on linear Differential Equations in terms of C.F. and P.I.
i) Derive rules for finding C.F. And P.I. in terms of operator D.
i) Define partial differential equation (P.D.E) .
ii) some example regarding partial differential equation.
i) Partial differential equations by eliminating arbitrary constants and arbitrary function .
ii) some example on P.D.E by eliminating arbitrary constants and arbitrary function .
i) Partial differential equations of the form Pp + Qq = R
i) Solve problems on Linear differential equation.
i) Discuss objective type question with answer .
CLASS TEST -2
i) Define Gamma function .
ii) Reduction formula for ۲(n)
i) Define Laplace Transform of a function f(t).
ii) Condition for the existance.
i) Transforms of elimentary functions.
ii) Some examples of elimentary function.
i) Explain linear, shifting property of L.T.
ii) Linearity property
i) First shifing property.
ii) Application of first shifting property.
i) Change of scale property
ii) Discuss some problem regarding on shifting property of L.T.
i) Laplace transform of derivatives .
ii) Laplace transform of integral.
i) Discuss some problem on L.T. of derivatives and integrals.
i) Inverse Laplace Transform .
ii) Derive formulae of inverse L.T.
i) Explain method of partial fractions .
ii) Discuss some problem regarding on I.L.T. of partial fraction .
i) Solve problems on L.T.
i) Define periodic functions.
ii) Founier Series defination.

iii) Some useful integrals.

i) State Dirichlet's condition for the Fourier expansion of a function.

ii) Convergence of Dirichlet's condition for the Fourier expansion of a function.

i) Express periodic function f(x) satisfying Dirichlet's conditions as a Fourier series.

i) State Euler's formulae.

ii) some examples of Euler's formula.

i) Dirchelet's Condition.

ii) Discontinuous Functions.

i) Define Even and Odd functions and find Fourier Series.

ii) Examples of even and odd functions.

i) Expansion of an Even Function.

ii)Expansion of an odd Function.

i) Half Range Series.

ii) Sine Series and Cosine Series .

i) Obtain F.S of continuous functions and having points of discontinuity.

i) Discuss some problem on fourier series.

i) Discuss objective type question with answer.

i) Introduction of Numerical methods.

ii) Limitation of analytical methods.

i) Bisection method.

ii) some examples of Bisection method.

i) Newton- Raphson method.

ii) some examples of Newton- Raphson method.

i) Discuss exercise of Numerical methods.

i) Explain finite difference and form table of forward and backward difference.

i) Discuss exercise of forword and backword difference.

i) Define shift Operator E.

ii) Relation between E & difference operator Δ

i) Newton's Forward interpolation formula for equal intervals.

ii) Newton's backward interpolation formula for equal intervals.

i)Examples of Newton's forward and backward interpolation formula for equal intervals.

i) State Lagrange's interpretation formula for unequal intervals.

i) Numerical integration and state.

ii) Newton's Cote's formula.

i) Trapezoidal rule.

ii) Some problems of Trapezoidal rule.

i) Simpson's 1/3rd rule

ii) Some problems on Simpson's 1/3rd rule.

i) Discuss exercise of Finite difference & interpolation.

i) Discuss objective type question with answer .

i) Previous year question paper discussion .

i) Previous year question paper discussion .

rces:

the Book

angineering atics	Dr B.S. Grewal	khanna publishers
ts of mathematics Vol-	Odisha state bureau of production	text book preparation and
ok of Engineering atics-I	C.R Mallick	Kalayani publication
ok of engineering atics-III	C.R Mallick	Kalayani publication

Signature of the Faculty

Website:https://ww

J.

DISCIPLINE	SEMESTER
SUBJECT:ENGG.M	NO.OF
ATHEMATICS-III	DAYS/WEEKS
WEELZG	CLASS ALLOTED
WEEKS	CLASS DAY
	1st
1ST	2nd
	3rd
	4th
	1st
2ND	2nd
	3rd
	4th
	1st
3RD	2nd
	3rd
	4th
	1st
	2nd
4TH	3rd
	4th
	1st
5TH	2nd
	3rd
	4th
	1st
	2nd
6TH	3rd
	4th
	1st
	2nd
7TH	3rd
	4th
	1st
0.1	2nd
8th	3rd
	4th

	1st
9TH	2nd
	3rd
	4th
	1st
	2nd
10TH	
	3rd
	4th
	1st
11.1	2nd
11th	3rd
	4th
	1st
10/1	2nd
12th	3rd
	4th
	1st
13th	2nd
	3rd
	4th
	1st
	2nd
14th	
	3rd
	4th
	1st
15th	2nd
	3rd
	4th

SI.No	Title of the Book
1.	Higher engineering mathematics
2.	Elements of mathe
3.	Text Book of Engi Mathematics-I
4.	Text Book of engir mathematics-III

GOVERNMENT POLYTECHNIC JAJPUR

A/ P: Ragadi, Block: Korei, Dist.: Jajpur, Odisha- 755019 w.gpjajpur.orgE-mail: principalgpjajpur@yahoo.co.in Contact: 9437155107

LESSON PLAN

3RD SEMESTER, MATH & SC

NAME OF THE TEACHING FACULTY: Pragyan Priyadarsini

SEMESTER FROM DATE :15/09/2022 TO DATE: 22/12/2022

NO.OF WEEKS: 15

TODICS

TOPICS		
i) Define rank of a matrix.		
ii) Elementary row transformations to determine the rank of a matrix.		
iii) State Rouche's theorem for consistency of a system of linear equations in n unknowns.		
iv) Solve equations in three unknowns testing consistency.		
i) Solve problems on matrices.		
ii) Introduction of linear differential equation		
iii) general solution of linear Differential Equations in terms of C.F. and P.I.		
iv) Discuss some problem on linear Differential Equations in terms of C.F. and P.I.		
i) Partial differential equations by eliminating arbitrary constants and arbitrary function .		
ii) some example on P.D.E by eliminating arbitrary constants and arbitrary function.		
iii)Partial differential equations of the form $Pp + Qq = R$		
iv) Solve problems on Linear differential equation.		
i) Discuss objective type question with answer.		
i) Define Gamma function .		
ii) Reduction formula for ۲(n)		
i) Define Laplace Transform of a function f(t).		
ii) Condition for the existance.		
iii) Transforms of elimentary functions.		
iv) Some examples of elimentary function.		
i) Explain linear, shifting property of L.T.		
ii) First shifing property.		
i) Application of first shifting property.		
ii) Change of scale property		
iv) Discuss some problem regarding on shifting property of L.T.		
i) Laplace transform of derivatives .		
ii) Laplace transform of integral.		
iii) Inverse Laplace Transform .		
iv) Derive formulae of inverse L.T.		
iii) Explain method of partial fractions .		
iv) Discuss some problem regarding on I.L.T. of partial fraction .		
v) Solve problems on L.T.		
i) Define periodic functions.		
ii) Founier Series defination.		
i) Some useful integrals.		
ii) State Dirichlet's condition for the Fourier expansion of a function.		
ii) Convergence of Dirichlet's condition for the Fourier expansion of a function.		
iv) Express periodic function f(x) satisfying Dirichlet's conditions as a Fourier series.		
v) State Euler's formulae.		
vi) some examples of Euler's formula.		

i) Dirchelet's Condition.
ii) Discontinuous Functions.
iii) Define Even and Odd functions and find Fourier Series.
iv) Examples of even and odd functions.
v) Expansion of an Even Function.
i)Expansion of an odd Function.
ii) Half Range Series.
i) Sine Series and Cosine Series .
ii) Obtain F.S of continuous functions and having points of discontinuity.
v) Discuss some problem on fourier series.
i) Discuss objective type question with answer .
ii) Introduction of Numerical methods.
iii) Limitation of analytical methods.
iv) Bisection method with some example
i) Newton- Raphson method.
ii) some examples of Newton- Raphson method.
iii) Discuss exercise of Numerical methods.
iv) Explain finite difference and form table of forward and backward difference.
i) Discuss exercise of forword and backword difference.
ii) Define shift Operator E .
iii) Relation between E & difference operator Δ
iv) Newton's Forward interpolation formula for equal intervals.
v) Newton's backward interpolation formula for equal intervals.
i)Examples of Newton's forward and backward interpolation formula for equal intervals.
ii) State Lagrange's interpretation formula for unequal intervals.
iii) Numerical integration and state.
iv) Newton's Cote's formula.
v) Trapezoidal rule.
i) Some problems of Trapezoidal rule.
ii) Simpson's 1/3rd rule
iii) Some problems on Simpson's 1/3rd rule.
iv) Discuss exercise of Finite difference & interpolation.
v) Discuss objective type question with answer .

	Name of Authors	Name of Publisher
g	Dr B.S. Grewal	khanna publishers
ematics Vol-	Odisha state bureau of production	text book preparation and
neering	C.R Mallick	Kalayani publication
neering	C.R Mallick	Kalayani publication

ed to complete the course.

GOVERNMENT POLYTECHNIC JAJPUR

A/ P: Ragadi, Block: Korei, Dist.: Jajpur, Odisha- 755019 Website:https://www.gpjajpur.orgE-mail: principalgpjajpur@yahoo.co.in Contact: 9437155107

LESSON PLAN

3RD SEMESTER, ELECTRICAL

	SEMESTED	NAME OF THE TEACHING FACULTY: Pragyan Priyadarsini
DISCIPLINE	SEMESTER	
SUBJECT:ENGG.M		SEMESTER FROM DATE : TO DATE:
ATHEMATICS-III	DAYS/WEEKS	NO.OF WEEKS: 16
	CLASS ALLOTED	NO.OF WEEKS: 10
WEELC		TODICS
WEEKS	CLASS DAY	TOPICS
	1st	i) Introduction of complex number
	2nd	ii) Real and Imaginary numbers.
1.	3rd	iii)Complex numbers, conjugate complex numbers.
1st		iv) Modulus and Amplitude of a complex
	4th	v) Geometrical Representation of Complex Numbers
		vi) Properties of Complex Numbers
	1st	i) Determination of three cube roots of unity and their properties.
	2nd	ii) De Moivre's theorem with example
2nd	3rd	iii) Discuss objective questions
ľ	4th	iv) Solve problems on complex number.
	1st	i) Define rank of a matrix.
	2nd	ii) Elementary row transformations to determine the rank of a matrix.
3rd	3rd	iii) State Rouche's theorem for consistency of a system of linear equations in n unknowns
	4th	iv) Solve equations in three unknowns testing consistency.
	1st	i) Solve problems on matrices.
	2nd	ii) Introduction of linear differential equation
4th	_114	iii) CLASS TEST-1
_	3rd	iv) general solution of linear Differential Equations in terms of C.F. and P.I.
ŀ	4th	v) Discuss some problem on linear Differential Equations in terms of C.F. and P.I.
	1st	i) Partial differential equations by eliminating arbitrary constants and arbitrary function .
	2nd	ii) some example on P.D.E by eliminating arbitrary constants and arbitrary function .
5th	3rd	iii)Partial differential equations of the form $Pp + Qq = R$
	4th	iv) Solve problems on Linear differential equation.
	1st	i) Discuss objective type question with answer .
ŀ		i) Define Gamma function .
	2nd	ii) Reduction formula for r(n)
·		i) Define Laplace Transform of a function f(t).
6th	3rd	ii) Condition for the existance.
	510	iii) Transforms of elimentary functions.
·		i) Some examples of elimentary function.
	4th	ii) Explain linear, shifting property of L.T.
	1st	i) First shifing property.
·	150	ii) Application of first shifting property.
	2nd	iii) Change of scale property
7th	3rd	iv) Discuss some problem regarding on shifting property of L.T.
·	510	v) Laplace transform of derivatives .
	4th	vi) Laplace transform of integral.
	1st	i) Inverse Laplace Transform .
	2nd	ii) Derive formulae of inverse L.T.
8th	3rd	iii) Explain method of partial fractions .
our	510	iv) Discuss some problem regarding on I.L.T. of partial fraction .
	4th	v) Solve problems on L.T.
		i) Define periodic functions.
	1st	i) Founier Series defination.
ŀ	150	iii) Some useful integrals.
	2nd	iv) State Dirichlet's condition for the Fourier expansion of a function.
9th		v) Convergence of Dirichlet's condition for the Fourier expansion of a function.
7111	3rd	vi) Express periodic function f(x) satisfying Dirichlet's conditions as a Fourier series.
-	510	vii) State Euler's formulae.
	4th	vii) some examples of Euler's formula.
		i) Dirchelet's Condition.
	1st	ii) Discontinuous Functions.
	151	i) Define Even and Odd functions and find Fourier Series.
10th	2nd	ii) Examples of even and odd functions.
		i) Expansion of an Even Function.
	21	
ŀ	3rd	ii)Expansion of an odd Function.
	4th	i) Half Range Series.
	1 - 4	i) Sine Series and Cosine Series .
	1st	ii) Obtain F.S of continuous functions and having points of discontinuity.
	<u> </u>	i) Discuss some problem on fourier series.
11th	2nd	ii) Discuss objective type question with answer .
		i) Introduction of Numerical methods.

	3rd	ii) Limitation of analytical methods.			
	4th	i) Bisection method with some example			
12th	1st	i) Newton- Raphson method.			
	2nd	ii) some examples of Newton- Raphson method.			
12th	3rd	iii) Discuss exercise of Numerical methods.			
	4th	iv) CLASS TEST -2			
-		i) Explain finite difference and form table of forward and backward difference.			
	1st	ii) Discuss exercise of forword and backword difference.			
		iii) Define shift Operator E .			
13th	2nd	iv) Relation between E & difference operator Δ			
	3rd	v) Newton's Forward interpolation formula for equal intervals.			
	4th	vi) Newton's backward interpolation formula for equal intervals.			
	1st	i)Examples of Newton's forward and backward interpolation formula for equal intervals.			
	2nd	ii) State Lagrange's interpretation formula for unequal intervals.			
14th		iii) Numerical integration and state.			
	3rd	iv) Newton's Cote's formula.			
	4th	v) Trapezoidal rule.			
	1st	i) Some problems of Trapezoidal rule.			
		ii) Simpson's 1/3rd rule			
15th	2nd	iii) Some problems on Simpson's 1/3rd rule.			
	3rd	iv) Discuss exercise of Finite difference & interpolation.			
	4th	v) Discuss objective type question with answer .			
	1st	ii) Discuss previous year questions with answer			
16th	2nd	iii) Discuss previous year questions with answer			
	3rd	iv) Discuss previous year questions with answer			

SI.No	Title of the Book	Name of Authors	Name of Publisher
1.	Higher engineering mathematics	Dr B.S. Grewal	khanna publishers
2.	Elements of mathematics Vol- 1	Odisha state bureau of text book preparation and production	
3.	Text Book of Engineering Mathematics-I	C.R Mallick	Kalayani publication
4.	Text Book of engineering mathematics-III	C.R Mallick	Kalayani publication

Signature of the Faculty