GOVERNMENT POLYTECHNIC JAJPUR

A/ P: Ragadi, Block: Korei, Dist.: Jajpur, Odisha- 755019

Website:https://www.gpjajpur.orgE-mail: principalgpjajpur@yahoo.co.in Contact: 9437155107

LESSON PLAN

3RD SEMESTER, MATH & SC

DISCIPLINE	SEMESTER	NAME OF THE TEACHING FACULTY: Pragyan Priyadarsini			
SUBJECT:ENGG .MATHEMATIC S-III	NO.OF DAYS/WEEKS CLASS ALLOTE	SEMESTER FROM DATE :15/09/2022 TO DATE: 22/12/2022			
WEEKS	CLASS DAY	TOPICS			
	1st	i) Define rank of a matrix.			
1ST	2nd	ii) Elementary row transformations to determine the rank of a matrix.			
	3rd	iii) State Rouche's theorem for consistency of a system of linear equations in n unknowns			
	4th	iv) Solve equations in three unknowns testing consistency.			
	1st	i) Solve problems on matrices.			
2ND	2nd	ii) Introduction of linear differential equation			
	3rd	iii) general solution of linear Differential Equations in terms of C.E. and B.I.			
	4th	iv) Discuss some problem on linear Differential Equations in terms of C.F. and P.I.			
	lst	i) Partial differential equations by eliminating arbitrary constants and arbitrary function.			
3RD	2nd	ii) some example on P.D.E by eliminating arbitrary constants and arbitrary function .			
	3rd	iii)Partial differential equations of the form $Pp + Qq = R$			
al (1991) Anda (199	4th	iv) Solve problems on Linear differential equation.			
4 22.54	1st	i) Discuss objective type question with answer .			
	and	i) Define Gamma function .			
	2110	ii) Reduction formula for Γ(n)			
4TH		i) Define Laplace Transform of a function f(t).			
		ii) Condition for the existance.			
		iii) Transforms of elimentary functions.			
	4th	iv) Some examples of elimentary function.			
	_1st	i) Explain linear, shifting property of L.T.			
	• •	ii) First shifing property.			
5TH		i) Application of first shifting property.			
		ii) Change of scale property			
	100 MW	iv) Discuss some problem regarding on shifting property of L.T.			
	1st	i) Laplace transform of derivatives .			
6ТН	2nd	ii) Laplace transform of integral.			
	3rd i	iii) Inverse Laplace Transform .			
		iv) Derive formulae of inverse L.T.			
		ii) Explain method of partial fractions .			
		v) Discuss some problem regarding on I.L.T. of partial fraction .			
7TH	3rd v) Solve problems on L.T.			
		Define periodic functions.			
1	1	Founier Series defination.			
	i	Some useful integrals.			
) State Dirichlet's condition for the Fourier expansion of a function.			
8th	2nd ii) Convergence of Dirichlet's condition for the Fourier expansion of a function.			
	3rd iv) Express periodic function f(x) satisfying Dirichlet's conditions as a Fourier series.			
	11/	State Euler's formulae.			
) some examples of Euler's formula.			

a a COM la rational de la companya de Companya de la compa

milice kar promiler i men Marse i milice Transform

9TH		i) Dirchelet's Condition.		
	1st	ii) Discontinuous Functions.		
	2nd	iii) Define Even and Odd functions and find Fourier Series.		
	3rd	iv) Examples of even and odd functions.		
	4th	v) Expansion of an Even Function.		
10TH	1st	i)Expansion of an odd Function.		
	2nd	ii) Half Range Series.		
		i) Sine Series and Cosine Series .		
	3rd	ii) Obtain F.S of continuous functions and having points of discontinuity.		
	4th	v) Discuss some problem on fourier series.		
11th	1st	i) Discuss objective type question with answer .		
	2nd	ii) Introduction of Numerical methods.		
	3rd	iii) Limitation of analytical methods.		
	4th	iv) Bisection method with some example		
12th.	1st	i) Newton- Raphson method.		
	2nd	ii) some examples of Newton- Raphson method.		
	3rd	iii) Discuss exercise of Numerical methods.		
	4th	iv) Explain finite difference and form table of forward and backward difference.		
	1st	i) Discuss exercise of forword and backword difference.		
	9 A	ii) Define shift Operator E .		
13th	2nd	iii) Relation between E & difference operator Δ		
Γ	3rd	iv) Newton's Forward interpolation formula for equal intervals.		
	4th	v) Newton's backward interpolation formula for equal intervals.		
80 80 10 10	1st	i)Examples of Newton's forward and backward interpolation formula for equal intervals.		
	2nd	ii) State Lagrange's interpretation formula for unequal intervals.		
14th	12 a 4	iii) Numerical integration and state.		
	3rd	iv) Newton's Cote's formula.		
	4th	v) Trapezoidal rule.		
15th	1st	i) Some problems of Trapezoidal rule.		
		ii) Simpson's 1/3rd rule		
	2nd	iii) Some problems on Simpson's 1/3rd rule.		
	3rd	iv) Discuss exercise of Finite difference & interpolation.		
	4th	v) Discuss objective type question with answer .		

SI.No	Title of the Book	Name of Authors	Name of Publisher	
1.	Higher engineering mathematics	Dr B.S. Grewal	khanna publishers	
2.	Elements of mathematics Vol- 1	Odisha state bureau of text book preparation and production		
3.	Text Book of Engineering Mathematics-I	C.R Mallick	Kalayani publication	
4.	Text Book of engineering mathematics-III	C.R Mallick	Kalayani publication	

N.B: 8 extra classes may be needed to complete the course.

2

Engyan Any adapting Signature of Eagulty