GOVERNMENT POLYTECHNIC JAJPUR

A/ P: Ragadi, Block: Korei, Dist.: Jajpur, Odisha- 755019

Website: https://www.gpjajpur.org E-mail: principalgpjajpur@yahoo.co.in Contact: 9437155107

DEPARTMENT OF CIVIL ENGINEERING (2022-2023)

LESSON PLAN

Discipline: ENGINEERING MECHANICS	Semester: 2nd	Name of the Teaching faculty: RUTUPARNA SWAIN
Subject: MECHANICS	No of Days	Semester from Date:25/10/2022 To Date: 31/01/2023
	/Week class	No of weeks: 15
	alloted: 4	i) FUNDAMENTALS OF ENGINEERING MECHANICS (Chapter-1)
	1st	
		II) Fundamentals.
		iii) Deliniuons of Mechanics, Statics, Dynamics, Rigid Bodies.
		i) Porce System.
		II) Definition, Classification of force system according to plane & line of action.
	2nd	III) Unaracteristics of Force & effect of Force.
1et		IV) Principles of Transmissibility & Principles of Superposition.
151		v) Action & Reaction Forces & concept of Free Body Diagram.
		I) Resolution of a Force.
	3rd	 I) Definition, Method of Resolution, Types of Component forces, Perpendicular components & non-perpendicular components.
		i) Composition of Forces.
	4th	ii) Definition, Resultant Force, Method of composition of forces, such as:
		A) Analytical Method such as Law of Parallelogram of forces & method of resolution.
		iii) Numerical solving related to Parallelogram Law of Force.
2ND	1st	B) Graphical Method - Introduction, Space diagram, Vector diagram, Polygon law of forces.
	2nd	C) Resultant of concurrent, non-concurrent & parallel force system by Analytical & Graphical Method.
		 i) Numerical solving using method of resolution of forces to find a resultant force.(Analytical Method)
	3rd	i) Numerical solving class using method of resolution of forces to find a resultant force.(Analytical Method)
	4th	 i) Numerical solving class using method of resolution of forces to find a resultant force.(Graphical Method)
	1st	i) Moment of Force.
		ii) Definition, Geometrical meaning of moment of a force, measurement of moment of a force & its S.I units.
		iii) Classification of moments according to direction of rotation, sign convention.
3RD	2nd	i) Law of moments, Varignon's Theorem of moments.
		ii) Applications of moments.
		iii) Analytical method for finding position of the resultant force by moments.
	3rd	i) Numerical solving class based on law of moments to find the force.
	4th	ii) Numerical solving class based on Varignon's Principle of moments to find magnitude and position of the resultant force.

		iii) Couple – Definition, moment of a couple classification, S.I. units, measurement of couple, properties of couple.
	1st	i) Numerical solving class based on couple to find magnitude of the couple.
	2nd	CLASS TEST-I
4TH		i) EQUILIBRIUM OF FORCES. (Chapter-2)
4111	3rd	ii) Definition, condition of equilibrium, Analytical & Graphical conditions of equilibrium for concurrent, non-concurrent & Free Body Diagram.
	4th	i) Lamia's Theorem – Statement and its proof.
5TH	1st	i) Numerical solving class by the application of Lami's Theorem for solving various engineering problems. (String problems)
	2nd	 i) Numerical solving class by the application of Lami's Theorem for solving various engineering problems. (String problems)
	3rd	 i) Numerical solving class by the application of Lami's Theorem for solving various engineering problems. (String problems)
	4th	i) Numerical solving class by the application of Lami's Theorem for solving various engineering problems. (Ball problems)
	1st	i) Numerical solving class by the application of Lami's Theorem for solving various engineering problems. (Ball problems)
	2nd	i) Numerical solving class by the application of Lami's Theorem for solving various engineering problems. (Ball problems)
6TH		i) FRICTION. (Chapter-3)
	3rd	ii) Definition of friction, Frictional forces, Limiting frictional force, Coefficient of Friction.
	4th	iii) Angle of Friction & Repose, Laws of Friction, Advantages & Disadvantages of Friction.
	1st	i) Equilibrium of a body on a rough horizontal plane. (both upward & downward conditions)
		ii) Numerical solving on friction of a body on rough horizontal plane.
7ТН	2nd	i) Equilibrium of a body on a rough inclined plane subjected to a force acting along the inclined plane. (both upward & downward conditions)
		i) Numerical solving on friction of a body on rough inclined plane subjected to a force acting along the inclined plane.
	3rd	i) Equilibrium of a body on a rough inclined plane subjected to a force acting horizontally. (both upward & downward conditions)
		ii) Numerical solving on friction of a body on rough inclined plane subjected to a force acting horizontally.
	4th	i) Equilibrium of a body on a rough inclined plane subjected to a force acting at some angle with the inclined plane. (both upward & downward conditions)
		ii) Numerical solving on friction of a body on rough inclined plane subjected to a force acting at some angle with the inclined plane.
8TH	1st	i) Applications of friction.(Ladder Friction)
		ii) Numerical solving based on ladder friction.
	2nd	i) Applications of friction.(Wedge Friction)
		ii) Numerical solving based on wedge friction.
	3rd	ii) Numerical solving based on wedge friction.

	4th	Previous year questions solving class on Friction.
9ТН	1st	i) CENTROID & MOMENT OF INERTIA. (Chapter-4)
		ii) Centroid – Definition, Moment of an area about an axis, centroid of geometrical figures such as squares, rectangles, triangles, circles, semicircles & quarter, circles, centroid of composite figures.
	2nd	i) Centre of gravity-Definition, Methods for finding centre of gravity.
		ii) Centre of gravity of plane area figures. (Rectangle, triangle, trapezium,circle, semicircle, quarter circle, circular sector.)
		 iii) Centre of gravity of solid figures. (Cube, cylinder, right circular cone, sphere, hemisphere, segment of sphere.)
	3rd	i) Centre of gravity of Plane Figures. (such as T-section, I-section, L-section etc.)
		ii) Centre of gravity of symmetrical sections. (such as T-section, C-section, I-section)
		iii) Numerical solving on centre of gravity of above symmetrical sections.
	4th	i) Centre of gravity of unsymmetrical sections. (such as L-section, composite section)
		ii) Numerical solving on centre of gravity of above unsymmetrical sections.
	1st	i) Centre of gravity of solid bodies. (Volume of cylinder, hemisphere, right circular solid cone.)
		ii) Numerical solving on centre of gravity of composite solid bodies.
	2nd	I) Centre of gravity of sections with cut out holes.
10TH		 Moment of Inertia – Definition, units of M.I., Methods for finding M.I
	3rd	ii) Moment of Inertia of rectangular section, hollow rectangular section.
		iii) Numerical solving on moment of inertia of above sections.
	4th	i) Perpendicular axis Theorems.
		ii) Moment of Inertia of circular section, hollow circular section.
		iii) Numerical solving on moment of inertia of above sections.
	1st	 i) Parallel axis Theorems. ii) Moment of Inertia of triangular section, hollow triangular section, semi circular section, hollow semi circular section.
		iii) Numerical solving on moment of inertia of above sections.
11TH	2nd	i) M.I. of plane lamina & different engineering sections. (T-section, I-section, L-section)
		ii) Numerical solving on moment of inertia of T-section, I-section.
	3rd	i) Numerical solving on moment of inertia of L-section.
	4th	i) Revision and doubt clearing class on C.G. and M.I
12TH	1st	Previous year questions solving class on Friction.
	2nd	CLASS TEST-II
	3rd	i) SIMPLE MACHINES. (Chapter-5)
		ii) Definition of simple machine and its types.
		iii) Derive velocity ratio of simple and compound gear train.
		i) Explain simple & compound lifting machine.
	4th	ii) Define M.A, V.R. & Efficiency of a machine & State the relation between them.

		iii) Numerical solving to find M.A., V.R., Efficiency of a machine.
		i) Reversibility of Machine, Self Locking Machine.
13TH	1st	ii) Numerical solving to check the reversibilty of machine.
		iii) State and show the graph of friction in a machine.
		iv) Numerical solving related to friction in a machine.
		i) State Law of Machine and show the graph.
	2nd 3rd	ii) Numerical solving to find law of machine, effort required to run the machine at no load and load condition.
		i) Maximum M.A. and maximun efficiency of a lifting machine.
		ii) Numerical solving related to maximum M.A. and maximum efficiency.
	4th	iii) Study of simple machines – A) Simple axle & wheel.
		i) Study of simple machines – B) Single purchase crab winch & C) Double purchase crab winch.
	1st	ii) Study of simple machines – D) Worm & Worm Wheel.
		i) Study of simple machines – E) Screw Jack.
		ii) Numerical solving to find efficiency of above simple machines.
		iii) Numerical solving to find efficiency of above simple machines.
14TH	2nd	Previous year questions solving class on simple machine.
	3rd	i) DYNAMICS. (Chapter-6)
	U.U.	ii) Kinematics & Kinetics, Principles of Dynamics, Newton's Laws of Motion.
	4th	i) Motion of Particle acted upon by a constant force.
	4-4	i) Work, Power, Energy & its Engineering Applications.
	1st 2nd	n) Kinetic & Potential energy & its application.
		i) Momentum & impulse.
15TH		ii) Conservation of energy & linear momentum, collision of elastic bodies and Coefficient of Restitution.
		iii) Numerical solving related to Coefficient of Restitution.
	3rd	i) Numerical solving related to Coefficient of Restitution.
	4th	Previous year questions solving class on dynamics.

Books Recommended

- Engineering Mechanics by A.R. Basu (TMH Publication Delhi) 1.
- 2. Engineering Machines - Basudev Bhattacharya (Oxford University Press).
- Text Book of Engineering Mechanics R.S Khurmi (S. Chand). 3.
- Applied Mechanics & Strength of Material By I.B. Prasad. Engineering Mechanics By Timosheenko, Young & Rao. 4.
- 5.
- Engineering Mechanics Beer & Johnson (TMH Publication). 6.

Signature of faculty