GOVERNMENT POLYTECHNIC JAJPUR

A/ P: Ragadi, Block: Korei, Dist.: Jajpur, Odisha- 755019

Website: https://www.gpjajpur.org E-mail: principalgpjajpur@yahoo.co.in Contact: 9437155107

DEPARTMENT OF MECHANICAL ENGINEERING

LESSON PLAN

Discipline: Mechanical	Semester: 3rd IName of the Teaching faculty: Suprava Defleta			
Subject: Thermal Engineering-I	No of Days/Week class alloted: 4			
Week	Class Day	Topics		
1st	1st	Concept of Thermodynamic Systems and its classification		
	2nd	Explain closed, open and isolated system		
	3rd	Significance of thermodynamic properties of a system		
	4th	Define pressure, volume, temperature, entropy, enthalpy, Internal energy and their units.		
	1st	Define Intensive and extensive properties, thermodynamic process, path, cycle, state, path function, point function		
2nd	2nd	Explain thermodynamic Equilibrium.		
	3rd	Explain Quasi-static Process.		
	4th	Conceptual explanation of energy and its sources		
3rd	1st	Comparison between Work and heat and solve related topic problems.		
	2nd	Define Mechanical Equivalent of Heat. Explain work transfer and displacement work		
	3rd	Solve problems related to work transfer and displacement work		
	4th	Solve exercise problems		
	1st	State & explain Zeroth law of thermodynamics.		
446	2nd	State & explain First law of thermodynamics		
4th	3rd	Limitations of First law of thermodynamics and its application		
	4th	Derive Steady flow energy equation and its application to turbine		
5th	1st	Derive Steady flow energy equation and its application to compressor		
	2nd	State 2nd law of thermodynamics and Clausius statements		
	3rd	State Kelvin planks statement and application of 2nd law in heat engine		
	4th	Application of 2nd law in heat pump and refrigerator		
6th	1st	Determine efficinecy and COP of heat engine		
	2nd	Determine efficinecy and COP of heat pump		
	3rd	Determine efficinecy and COP of heat refrigerator		

	4th	Solve simple problems on heat engine, heat pump and refrigerator	
	1st	Define perfect gas and laws of perfect gas to determine thermodynami properties and State Boyle' law, Chalrle's law, Dalton's law of partial	
	2nd	State Gaylussac law, derive general gas equation	
7th	3rd	Define characteristic gas constant, Universal gas constant, Solve simple problems.	
	4th	Explain specific heat of gas (Cp and Cv) and establish relation between C and Cv and define enthalpy of a gas	
	1st	Derive workdone during non-flow process	
	2nd	Application of 1st law of thermodynamics to Isothermal process.	
8th	3rd	Application of 1st law of thermodynamics to Isobaric process.	
	4th	Application of 1st law of thermodynamics to Isentropic process.	
	1st	Application of 1st law of thermodynamics to Polytropic process.	
9th	2nd	Explain free expansion and throttling process.	
501	3rd	Class test 1	
	4th	Explain and classify I.C engine	
	1st	Define terminolgy o IC engine such as Bore, dead centers	
10th	2nd	Define stroke volume, piston speed, RPM and their formula.	
10111	3rd	Explain working principle of 2-stroke C.I Engine	
21 21 - 21 - 21	4th	Explain working principle of 2-stroke S.I Engine	
	1st	Explain working principle of 4-stroke C.I Engine	
	2nd	Explain working principle of 4-stroke S.I Engine	
11th	3rd	Differenciate between 2-stroke and 4-stroke C.I Engine and S.I Engine	
	4th	Derive Carnot cycle	
	1st	Solve problems related to Carnot cycle	
12th	2nd	Derive Otto cycle	
12(1)	3rd	Solve problems related to Otto cycle	
	4th	Derive Diesel cycle	
	1st	Solve problems related to Diesel cycle	
13th	2nd	Derive Dual cycle	
13(1)	3rd	Solve problems related to Dual cycle	
	4th	Solve excercise problems on Otto and Diesel cycle	
	1st	Solve excercise problems on Dual cycle	
14th	2nd	Define fuel and combustuion and types of fuel	
14th	3rd	Application of different types of fuel(solid fuel)	
	4th	Application of different types of fuel(liquid fuel)	
	1st	Application of different types of fuel(gaseous fuel)	

15th	2nd	Heating values of fuels
	3rd	Define quality of fuels such as Octane number of I.C engine
	4th	Define quality of fuels such as Cetane number of I.C engine
16th	1st	Class test 2
	2nd	Previous year questions discussion and solve problems.
	3rd	Previous year questions discussion and solve problems.
	4th	Previous year questions discussion and solve problems.

Learning resources:

Learning resources.				
Sl. No.	Author	Title of the book	Publisher	
-	R.S. Khurmi	Thermal Engineering	S.Chand	
01	A.R.Basu	Thermal Engineering	Dhanpat Rai	
02	A.S. Sarao	Thermal Engineering	Satya Prakash	
03		Engineering Thermodynamics	TMH	
04	P.K.Nag		TMH	
05	Mahesh M Rathore	Thermal Engineering		
			Signature of Faculty Lect (Meth)	