GOVERNMENT POLYTECHNIC JAJPUR

A/ P: Ragadi, Block: Korei, Dist.: Jajpur, Odisha- 755019

Website: https://www.gpjajpur.org E-mail: principalgpjajpur@yahoo.co.in Contact: 9437155107

DEPARTMENT OF MECHANICAL ENGINEERING

		LESSON PLAN (2022-2023)	
Discipline: Mechanical	Semester: 3RD	Name of the Teaching faculty: KEDARNATH JENA	
Subject:	No of Days/	Semester from Date: 15. 19 . 2022 To Date: 22.01.2022	
Strength of	Week class	No of weeks: 15	
Material (Th-2)			
Week	Class Day	Topics	
	Class Day	CH. 1 SIMPLE STRESS & STRAIN.	
1st	4th	Introduction to Strength of Material. Types of load, stresses & strains (Axial and tangential)	
	1 st	Poisson's ratio, Lateral and Linear strain. Numerical to find stress, strain, elongation and Poisson's ratio.	
2nd	2nd	Hooke's law. Young's modulus, bulk modulus, modulus of rigidity, Relation between E & C, E & K.	
	3rd	Relation between three elastic constants. Numerical	
	4th	Principle of super position. Numerical	
	lst	Numerical on above.	
21	2nd	Numerical on above.	
3rd	3rd	Stresses in composite section. Numerical	
	4th	Temperature stress and strain, Temperature stress in compositebar (single core Numerical	
	1 st	Numerical on above.	
	2nd	Strain energy and resilience, Stress due to gradually applied load.	
4th	3rd	Stress due to suddenly applied and impact load	
		CH. 2 Thin cylinder and spherical shell under internal pressure.	
	4th	Introduction to Thin cylinder and spherical shell. Assumption for thin cylindrical shell. Hoop and longitudinal stress and strain.	
	1st	Determination of hoop stress and longitudinal stress.	
	2nd	Numerical to find safe pressure, thickness and diameter.	
5th	3rd	Determination of Hoop strain, longitudinal strain and volumetric strain	
	4th	Determination of Change in length, diameter and volume of thin cylindrical shell.	
	1st	Numerical to find change in dimensions of thin cylindrical shell.	
	2nd	Numerical to find change in dimensions of thin cylindrical shell.	
		CH. 3. Two dimensional stress system.	
6th	3rd	Introduction to 2-dimensional stress system; Concept of Principal plane, Principal stress and strain; Stresses in oblique plane	
	4th	Determination of normal stress, shear stress and resultant stresson an oblique plane of a body which subjected to (i) direct stress in one direction only.	
	1 st	Numerical	

7th	2nd	Determination of normal stress, shear stress and resultant stress on an obliq plane of a body which subjected to (ii) direct stress in two perpendicular directions. Numerical	
	3rd	Numerical.	
	4th	Determination of normal stress, shear stress and resultant stress on an oblique plane of a body which subjected to (iii) shear stress only. Numerical	
	lst	Numerical.	
8th	2nd	Determination of normal stress, shear stress and resultant stress on an oblique plane of a body which subjected to (iv) direct stress in one direction and follow by shear stress. Numerical	
otti	3rd	Numerical.	
	4th	Determination of normal stress, shear stress and resultant stress on an oblique plane of a body which subjected to (v) direct stress in two perpendicular direct and followed by shear stress. Numerical	
	1st	Numerical.	
9th	2nd	Concept of Mohrs circle. Mohrs circle problems.	
5011	3rd	Mohrs circle problems.	
	4th	Class TEST 1	
		CH4 Bending moment and shear force.	
	lst	Types of beam and load. Concept of shear force and bending moment.	
	2nd	Sign convention . Realationship between SF, BM and loading.	
10th		Numerical to determine Shear force and bending moment diagram in cantileve	
	3rd	beam subjected to point load.	
	4th	Numerical to determine Shear force and bending moment diagram in cantileve	
		beam subjected to point U.D.L. Numerical to determine Shear force and bending moment diagram in Simply	
	lst	supported beam subjected to point load.	
	2nd	Numerical to determine Shear force and bending moment diagram in Simply	
11th	ZIIU	supported beam subjected to point U.D.L.	
	3rd	Numerical to determine Shear force and bending moment diagram in Over hanging beam subjected to point load.	
	4th	Numerical to determine Shear force and bending moment diagram in Over	
		manging beam subjected to U.D.L	
	lst	CH. 5 Theory of simple bending.	
		Introduction to Theory of simple bending, Assumptions in the theory of bending	
12th	2nd	Neutral axis , Theory of simple bending	
	3rd	Moment of resistance, Bending equation	
	4th	Section modulus of rectangular and circular beam sections	
	1st	Numerical	
	2nd	Numerical	
42.1	2110	CH. 6. Combined direct and bending stress.	
13th	3rd	Define column, types of column, Axial lead 5	
		Define column, types of column, Axial load, Eccentric load on column.	
	4th	Direct stresses, Bending stresses, Maximum & Minimum stresses in short column: for uniaxial system	
	lst	Direct stresses, Bending stresses, Maximum & Minimum stresses in short column: for biaxial system	
	2nd	Numerical	
14th	2110		
	3rd	Buckling load computation using Euler's formula (noderivation) in Columns with various end conditions	

	4th	Numerical on above.
		CH. 7. Torsion.
	1st	Torsion in shafts, Assumption of pure torsion
	2nd	Theory of pure torsion
15th	3rd	Torsion equation for solid and hollow circular shaft ,Numerical
	4th	Comparison between solid and hollow shaft subjected to pure torsion, torsional rigidity, Numerical
	1st	Numerical
16th	2nd	Class test 2
	3rd	Previous year question discussion.

Learning resources:

	Author	Title of the book	Publisher
01	S Ramamrutham	Strength of Materials	Dhanpat Rai
02	R K Rajput	Strength of Materials	S.Chand
03	R.S khurmi	Strength of Materials	S.Chand
04	G H Ryder	Strength of Materials	Mc millon and co. lmtd
	S Timoshenko and D H Young	Strength of Materials	Signature of Faculty