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LIMITS  

 

Introduction 
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Here L.H.L = R.H.L 
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Here L.H.L ≠ R.H.L 
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Here we can’t get any definite number 
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Note: from the earlier examples (1 to 4) we observe that for some functions  

 

L.H.L = R.H.L (example 2) 

 

L.H.L ≠ R.H.L (example 3) 

 

L.H.L or R.H.L or both not defined (example 4) 

L.H.L Left Hand Limit  

R.H.L Right Hand Limit  

THEOREM: EXISTENCE OF LIMIT 
 

If L.H.L = R.H.L, then we can say limit of the function exists. 

 

Existence of Limit 
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Definition of Limit 

 Let f(x) be a function defined in neighborhood of ‘a’, except 

‘a’. 

 Let ‘l’ be any number.  

 Then we can say limit of f(x) as ‘x’ approaching to ‘a’ is ‘l’. 

i.e. 

 

Note:  

1. The limit depends upon the values of f(x) in the 

neighborhood of ‘a’, except ‘a’. 

2. The function f(x) may or may not be defined at ‘a’. 
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Neighborhood of a point 

 Let’s check neighborhood of point ‘2’. 

 

 

 

Real line 
2- 2+ 
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Evaluation of L.H.L and R.H.L 

 LEFT HAND LIMIT  RIGHT HAND LIMIT 
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Q1 Evaluate L.H.L and R.H.L where  

 LEFT HAND LIMIT  RIGHT HAND LIMIT 

L.H.L ≠ R.H.L 
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Q2    

 LEFT HAND LIMIT  RIGHT HAND LIMIT 

L.H.L ≠ R.H.L 
Video  links 

https://www.youtube.com/channel/UCNzx7h9IOLzmNwVcBe76eAQ


Video  links 

https://www.youtube.com/channel/UCNzx7h9IOLzmNwVcBe76eAQ


Q3    

 LEFT HAND LIMIT (x < a)  RIGHT HAND LIMIT (x > a) 

L.H.L = R.H.L 

Note: 

1. f(x) at x = a {i.e. functional value of f(x)} 

2. f(x) at x ≠ a {i.e. functional value of f(x)} 

L.H.L. x < a R.H.L. x > a 
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Q4 Examine the existence of the function    

 LEFT HAND LIMIT (x < 1/2)  RIGHT HAND LIMIT (x >1/2) 

L.H.L = R.H.L 
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Q5 

 LEFT HAND LIMIT  RIGHT HAND LIMIT 

L.H.L ≠ R.H.L 
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Greatest Integer function 

[x] is known as greatest integer function 
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Q6 Examine the existence of 

 LEFT HAND LIMIT  RIGHT HAND LIMIT 

L.H.L ≠ R.H.L 

Video  links 

https://www.youtube.com/channel/UCNzx7h9IOLzmNwVcBe76eAQ


Q7 Examine the existence of 

 LEFT HAND LIMIT  RIGHT HAND LIMIT 

L.H.L = R.H.L 
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Evaluation of Limit 

 Evaluation of algebraic limit. 

5 different methods 

1. Direct Substitution method 

2. Factorisation method 

3. Rationalisation method 

4. Evaluation of limit at infinity 

5. Evaluation of limit using some 

standard formulas. 

 Evaluation of non-algebraic limit. 

1. Evaluation of limit using 

some standard formulas. 

Evaluation of limit is divided into two parts: 
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5 different methods 

1. Direct Substitution method 

2. Factorisation method 

3. Rationalisation method 

4. Evaluation of limit at infinity 

5. Evaluation of limit using some standard formulas. 

EVALUATION OF ALGEBRAIC LIMITS 
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1. Direct substitution method 

Q1 Evaluate 

Solution:  

Q2 Evaluate 

Solution:  
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Q3 Evaluate 

Solution:  

1. Direct substitution method 
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2. Factorisation method 

Q1 Evaluate 

Solution:  NOTE 
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2. Factorisation method 

Q2 Evaluate 

Solution:  
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3. Rationalisation method 

NOTE 

METHOD 
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Q1 Evaluate 

Solution:  

3. Rationalisation method 
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Q2 Evaluate 

Solution:  

3. Rationalisation method 

Video  links 

https://www.youtube.com/channel/UCNzx7h9IOLzmNwVcBe76eAQ


4. Evaluation of limit at infinity 

METHOD 
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4. Evaluation of limit at infinity 

Q1 Evaluate 

Solution:  
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4. Evaluation of limit at infinity 

Q2 Evaluate 

Solution:  
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4. Evaluation of limit at infinity 

Q3 Evaluate 

Solution:  
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4. Evaluation of limit at infinity 

Q4 Evaluate 

Solution:  
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5. Evaluation of limit using standard formulas 

FORMULAS 
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Q1 Evaluate 

Solution:  FORMULA 

5. Evaluation of limit using standard formulas 
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Q2 Evaluate 

Solution:  

FORMULA 

5. Evaluation of limit using standard formulas 
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EVALUATION OF NON-ALGEBRAIC LIMITS 

FORMULAS 
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Evaluation of non-algebraic limits 

Q1 Evaluate 

Solution:  

FORMULA 
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Evaluation of non-algebraic limits 

Q2 Evaluate 

Solution:  

FORMULA 
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Evaluation of non-algebraic limits 

Q3 Evaluate 

Solution:  
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Evaluation of non-algebraic limits 

Q4 Evaluate 

Solution:  FORMULA 
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Evaluation of non-algebraic limits 

Q5 Evaluate 

Solution:  

FORMULA 
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Evaluation of non-algebraic limits 

Q6 Evaluate 

Solution:  
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Evaluation of non-algebraic limits 

Q7 Evaluate 

Solution:  

FORMULA 
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Evaluation of non-algebraic limits 

Q8 Evaluate 

Solution:  FORMULA 
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Definition  

 An equation involving  

◦ independent variable,  

◦ dependent variable and  

◦ derivative of dependent variable with 

respective to the independent variable or 

variables  

 is known as DIFFERENTIAL EQUATION. 
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For example: 

 In the above equation: 

◦ x = independent variable 

◦ y = dependent variable 

 

◦      = derivative of dependent variable (i.e. ‘y’) 

        with respective to the independent 

        variable or variables (i.e. ‘x’)  

 

dy 

dx 
__ + 3y2 =  9x 

dy 

dx 
__ 
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Types of Differential Equations 

 Differential Equations are of 2 types: 

 

A. Ordinary differential equations (O.D.E) 

B. Partial differential equations (P.D.E) 
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Ordinary differential equations 

(O.D.E) 

 Differential equations involving derivatives w.r.t 

only one independent variable is called 

Ordinary differential equations (O.D.E) 

:  

 

 

 Here the derivatives includes only one 

independent variable i.e. ‘x’ 

d2y 

dx2 
__ + 5 =  9x dy 

dx 
__ –  0 
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Partial differential equations    

(P.D.E) 

 Differential equations involving derivatives w.r.t 

more than one independent variable is called 

Partial differential equations (P.D.E) 

:  

 

 

Here u = f (x ,y, z), therefore 

◦ u   dependent variable 

◦ x, y, z   independent variables 

+ =  
∂u 

∂z 
__ 5u ∂u 

∂x 
__ ∂u 

∂y 
__ + 
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 Order of the Differential equation 
  Order of the differential equation is the 

highest order of the derivatives occurring 

in it. 

 As we already know: 

dy 

dx 
__ 1st order derivative  

d3y 

dx3 
__ 

d2y 

dx2 
__ 

dny 

dxn 
__ 

2nd  order derivative  

3rd order derivative  

nth order derivative  
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Lets see few examples: 

 

: 

 
◦ Order = 2 

 

 

: 

 
◦ Order = 3 

 

d2y 

dx2 
__ + 5 =  9x dy 

dx 
__ –  0 

(   )  d3y 

dx3 
__ + x2  =  

dy 

dx 
__ 
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 Degree of the Differential equation 

 Degree of the Differential equation is the 

highest power of the highest order 

derivative after the equation has been 

freed from radicals and fractions. 

 

Lets see few examples: 

: 
◦ Order = 3 

◦ Degree = 1 

d3y 

dx3 
__ + =  9x dy 

dx 
__ (   )  

2 
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: 

 

 

 

 

◦ Order = 2 

◦ Degree = 2 

 

(   )  
2 

d2y 

dx2 
__ =  3 +  

dy 

dx 
__ √ 

d2y 

dx2 
__ =  3 +  

dy 

dx 
__ [ squaring both sides] 
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:  

 

 

 

 

 

 

 

 

 

◦ Order = 2 

◦ Degree = 2 

(   )  
2 

1 +  
dy 

dx 
__ [         ] 

5/2 

= 3 (   )  d2y 

dx2 
__ 

(   )  
2 

1 +  
dy 

dx 
__ [         ] 

5 
=    3 (   )  d2y 

dx2 
__ {      } 

2 

(   )  
2 

1 +  
dy 

dx 
__ [         ] 

5 
=   9 (   )  d2y 

dx2 
__ 

2 

[ squaring both sides] 
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Solution of Differential equation 
 Let us take a differential eqn and a function 

 

 

 

 

 

 

 

d2y 

dx2 
__ + y = 0 

dy 

dx 
__ 

d2y 

dx2 
__ 

= a cos(x+b)  

= - a sin (x+b) 

[differentiating eqn        ] 

[differentiating again] 

[where a, b are real number] 

then  

contd.. 

y = a sin (x+b)  
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 so we conclude that: 

 

now putting the values of y &        in eqn  
d2y 

dx2 
__ 

L.H.S   
d2y 

dx2 
__ + y = - a sin (x+b) + a sin (x+b) = 0  

contd.. 

L.H.S = R.H.S 0  R.H.S  

Note:- a function is said to be solution of a differential 

equation if it satisfies the equation. 

is solution of differential equation  

as it satisfies the equation. 

y = a sin (x+b)  

d2y 

dx2 
__ + y = 0 
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Two types of solution 

A. General or complete solution 

B. Particular solution 
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General or complete solution 

 A solution which contains the number of 

arbitrary constant equal to the order of the 

differential equation is called a general solution. 

:  

 

 

 

 

◦ Order of differential equation = 2  

◦ a, b are two arbitrary constants in the solution. 

is general solution of 

differential equation  

y = a sin (x+b)  
d2y 

dx2 
__ + y = 0 
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Particular solution 

 A particular solution of a differential equation is 

a solution obtained from the general solution by 

giving some particular values to the arbitrary 

constants. 

:  

 

 

 

is particular solution of 

differential equation  

y = 2 sin (x+5)  
d2y 

dx2 
__ + y = 0 
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Solution of Differential equation 

Solution of 1st order and 1st degree equation by:  

 

A. Separation of variables  

B. Solution of linear Differential equation 

of first order 
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Separation of variables  
 Consider the Differential equation 

 

 

 

 

 

 

 

 

 

 

 

dy 

dx 
__ 

 Integrating both sides 

 Equation     can be separable of variables 

=  f (x,y) 

dy 

dx 
__ =  f1(x) f2(y) 

dy 

f2(y) 
__ =  f1(x) dx 

 Which is a complete solution 

dy 

f2(y) 
__ =  f1(x) dx + C ∫ ∫ 
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 Solve 
 

 Soln   

1+y2 

1+x2 
___ =  

dy 

dx 
__ 

dx 

1+x2 
___ =  

dy 

1+y2 
___ 

[ integrating both sides ] 

dx 

1+x2 
___ =  

dy 

1+y2 
___ 

∫ ∫ 

tan-1 y = tan -1x + C  

[ cross-multiplying ] 
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 Solve  
 

 Soln   
   

 

tany (1+ ex)  
____ ___  sec2y dy =  - ex dx 

ex tany dx + (1+ ex) sec2y dy = 0 

 (1+ ex) sec2y dy =  - ex tany dx 

[ integrating both sides ] 

tany  (1+ ex)  
____  ___  sec2y dy =   - ex dx 

∫ ∫ 

ex tany dx + (1+ ex) sec2y dy = 0  

contd.. I1 I2 Video  links 
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 For  

Let  

 For  

Let  

 

contd.. 

 sec2y =  
du 

dy 
__ 

 tany = u   (1+ ex) = v  

ex  = dv 

dx 
__ 

 sec2y dy = du  ex dx = dv  

 (1+ ex)  
____  ___  sec2y dy 

∫ ∫ 
ex dx 

= 
du 

 u 
__ 

∫ ∫ = 
dv 

 v 
__ -  -  

= log u = - log v 

= log tany = - log (1+ ex) 

 log tany = - log (1+ ex) + C  

Egn     becomes: 

tany 
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Solution of linear Differential 

equation of first order 

 
 A differential equation in which the dependent 

variable and all its derivatives occur in the 1st 

degree only and are not multiplied together is 

called a Linear Differential equation.  

 Standard form of linear differential equation 

(1st order) 

 

 where P and Q may be constant or only a function of x. 

 coefficient of           is always unity. 

dy 

dx 
__ +  Py = Q 

dy 

dx 
__ 

contd.. 
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method of solution 

 Step 1 
◦ Find I.F (Integrating factor) 

 
 

 Step 2 
◦ Then the complete solution is given by  
 
  y x I.F = ∫{Q x (I.F)} dx + C 

contd.. 

ₑ ∫ p dx 
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 Solve 
 

 Soln 

dy 

dx 
__ +  y tanx = secx 

dy 

dx 
__ +  Py = Q 

It is in its standard form 

[ P = tanx ] 

[ Q = secx ] 

ₑ ∫ p dx     I.F 
     (Integrating factor) 

ₑ ∫ tanx dx 

ₑ log lsecxl 

secx 
contd.. 
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complete solution is given by: 

 

 

 

y x I.F = ∫{Q x (I.F)} dx + C 

y x secx = ∫{secx x secx} dx + C 

y secx = ∫{sec2x} dx + C 

y secx = tanx + C  

contd.. 
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 Solve 
 

 Soln 
 

x dy 

   dx 
   __ +  2y = 4x2 

2y 

 x 
__ +  = 4x 

it is not in its standard form  

[ P =         ] 

[ Q =  4x  ] 

ₑ ∫ p dx 

ₑ ∫      dx 

ₑ 2 log x 

x2 contd.. 

[ divide by ‘x’ on both sides ]  dy 

dx 
__ 

now it is in the standard form  

2 

x 
_ 

I.F   

2 

x 
_ 

ₑ 2 ∫      dx 

ₑ log x2 

1 
x 
_ 
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complete solution is given by: 

 

contd.. 

y x I.F = ∫{Q x (I.F)} dx + C 

y x2= ∫(4x . x2) dx + C 

 

y x2= ∫(4x3) dx + C 

y x2 =       + C 
4 

4x4 _ 

y x2 = x4 + C 
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 Solve 
 

 Soln 
 

   dy 

   dx 
   __ +  2xy – x3 = 0 

it is not in its standard form  

[ P =          ] 

 

[ Q =         ] 

contd.. 

[ divide by ‘1+x2’ on both sides ]  

now it is in the standard form  

  2x 

1+x2 

___ 

(1+x2)  

  dy 

  dx 
  __ +   =  0 

1+x2  1+x2  

2x y – x3  ___ ___ 

  x3 

1+x2 

___ 

  dy 

  dx 
  __ +  = 

1+x2  1+x2  

2x y  x3  ___ ___ 
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ₑ ∫ p dx 

ₑ ∫          dx 

ₑ  log t 

I.F 

t = 1+x2  

contd.. 

  2x 

1+x2 

___ [ let 1+x2 = t ]  

ₑ ∫     dt 1 

 t 

_ [ 2x =           ]  
  dt 

  dx 
  __ 

[ 2x dx =  dt  ]  
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complete solution is given by: 

 

contd.. 

y x I.F = ∫{Q x (I.F)} dx + C 

y (1+x2 ) =  (         )           dx + C 

 

y (1+x2 ) = ∫x3 dx + C 

y (1+x2 ) =       + C 
4 
x4 _ 

  x3 

1+x2 

___ (1+x2 )  ∫ 
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Video  linksVideo  links
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scalar vector
 only magnitude (size)
 3.044, −7 and 2½

 magnitude and direction

Video  links

Example:
 Distance = 3 km
 Speed = 9 km/h

(kilometers per hour)

 Displacement = 3 km 
Southeast

 Velocity = 9 km/h 
Westwards
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Vector - Notation/ Denoted as
 It is denoted as ‘vector AB’ or ‘vector a’.
 point A from where the vector starts is called its initial point
 point B where it ends is called its terminal point.
 The distance between initial and terminal points of a vector 

→

Video  links

 The distance between initial and terminal points of a vector 
is called the magnitude (or length) of the vector, denoted as 
|AB|, or |a|, or a. 

 The arrow indicates the direction of the vector.

→



Types of vector
 zero or null vector
 unit vector
 negative of a vector

co-initial vectors

Video  links

 co-initial vectors
 co-terminus vectors
 equal vectors
 collinear or parallel vectors



zero or null vector
 initial and terminal points coincident
 denoted by 
 Magnitude (zero)

Video  links



unit vector
 Magnitude       1 (unit magnitude, A= 1)
 denoted as
 purpose specify a direction in space

Video  links
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negative of a vector
 Vector of same magnitude
 but opposite direction
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equal vectors
 same magnitude (size) as well as direction
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co-initial vectors
 same starting point
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co-terminus vectors
 same terminal point
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collinear or parallel vector
 collinear vectors lying on one line

parallel
collinear vector
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 parallel vectors lying parallel to each other

parallel vector



position vector
 Vector having initial point is at origin. Here OP is the 

position vector of point ‘P’.

P (4 , 5)
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OP

P (4 , 5)

O



Representation of vectors 
in terms of the position vectors

 Let A and B be two given points.

 Then OA and OB are the position vectors of A and B

Video  links

 Then AB can be represented as:

AB = p.v. of B – p.v. of A

AB = OB – OA

B

OO

A



Components of a vector in two dimensions

P (x, y)
Y

X

y

x

Let      and      be the unit vectors 
along x-axis and y-axis 

Then OM = x

MP =  y
O M
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MP =  y

Then OP =  x    + y    [by Triangle law of addition]

|OP | = √ x2 + y2 as in ∆ OPM 

(OP)2 = (OM)2 + (PM)2

(OP)2 = x2 + y2

OP = √ x2 + y2



Components of a vector in three dimensions
Let  P (x, y, z) be a point in 3D

Here  i ,  j  &  k  are unit vectors along X-axis,  Y-axis &  Z-axis respectively

Then 

OA=  x i

Z-axis
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OB = y j

OC = z k

So  OP = x i + y j + z k

and   |OP| = √ x2 + y2 + z2
y 

y  j

z 

z x x 

X-axis

Y-axis 
i

k P (x, y, z)



Operations on vectors
 Addition of two vectors

 Triangle law of addition

 Parallelogram law of addition

Subtraction of two vectors 
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 Subtraction of two vectors 

 Multiplication

 of a vector with a scalar

 of two vectors by Dot product

 of two vectors Cross product



Adding Vectors by 
triangle law of addition

 We can add two vectors by joining them head-to-tail
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triangle law of vector addition – states
that if two vectors represented by 2 sides of the triangle
then their sum is represented by the third side of the
triangle but in the reverse order.



Adding Vectors by 
parallelogram law of vectors

 We can also add two vectors having a same origin

Video  links

parallelogram law of vector addition – states
that if 2 vectors a & b are represented by 2 adjacent sides of a
parallelogram, then their sum a + b is represented by the
diagonal of the paralleogram through their initial point.



Subtracting vectors

 Let a and b be two vectors, reverse the direction of the 
vector b then add as usual:
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a+b



Multiplying a Vector by a Scalar

 product of the vector a by the scalar λ= λa

 magnitude
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Example: a x 2 = 2a 
magnitude = = 2a



Addition of two vectors in components
Let  a  = a1 i + a2 j + a3 k  ;   b  = b1 i + b2 j + b3 k Let  a  = a1 i + a2 j + a3 k  ;   b  = b1 i + b2 j + b3 k 

Then  a +b = (a1 i + a2 j + a3 k)  +  ( b1 i + b2 j + b3 k)Then  a +b = (a1 i + a2 j + a3 k)  +  ( b1 i + b2 j + b3 k)

(a1 + b1) i + (a2 + b2) j + (a3 + b3) k(a1 + b1) i + (a2 + b2) j + (a3 + b3) k
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(a1 + b1) i + (a2 + b2) j + (a3 + b3) k(a1 + b1) i + (a2 + b2) j + (a3 + b3) k

Subtraction of two vectors in components

Then  a - b = (a1 i + a2 j + a3 k)  - ( b1 i + b2 j + b3 k)Then  a - b = (a1 i + a2 j + a3 k)  - ( b1 i + b2 j + b3 k)

(a1 - b1) i + (a2 - b2) j + (a3 - b3) k(a1 - b1) i + (a2 - b2) j + (a3 - b3) k



Multiplication of a vector with scalar

a  = a1 i + a2 j + a3 ka  = a1 i + a2 j + a3 k

Let λ be a scalar
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Then λ a = λ (a1 i + a2 j + a3 k) Then λ a = λ (a1 i + a2 j + a3 k) 

λ a1 i + λ a2 j + λ a3 k λ a1 i + λ a2 j + λ a3 k 



Multiplication of 2 vectors
By using Scalar/ Dot product

By using Vector/ Cross product
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By using Vector/ Cross product



Scalar or Dot Product

a · b = |a| × |b| × cos (θ)

 Let  a  &  b  be two vectors.
 Then dot product of them is denoted by   a . b 
 and defined as:
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a · b = |a| × |b| × cos (θ)

a · b = a × b × cos (θ)

or  cos(θ)=
a · b

|a|  |b|



Geometrical representation of Dot product
Here in the given figure 
θ is the angle between the vectors  a  &  b

θ

A 

B

L

M

b

O

Consider the right angled triangle ∆OBL 
then

cos θ = b

h 

OL

OB

OL

|b|
__  = __  = __
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A La
O

h OB |b|

|b| cos θ = OL

and OL is known as projection of  b  on  a

as we know   a . b  = |a| |b| cos θ

a . b  = |a| OL

a . b  = OL

|a| 

___

So scalar projection of  b  on  a

=   a . b  

|a| 

___

Continued..



θ

A 

B

L

M

a

b

O

Again consider the right angled triangle ∆OAM
then

cos θ = b

h 

OM

OA

OM

|a|
__  = __   = __

|a| cos θ = OM

Continued..
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and OM is projection of  a  on  b

as we know   a . b  = |a| |b| cos θ

a . b  = |b| OM

a . b  = OM

|b| 

___

So scalar projection of   a  on  b

=   a . b  

|b| 

___



Dot product in terms of components
Let a  = a1 i + a2 j + a3 k

b  = b1 i + b2 j + b3 k

i . j  =  j . k =  k . i = 0

or   j . i =  k . j =  i . k  = 0

We have

1
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i . i =  j . j =  k . k  = 1 2

Then a . b  =  a1 i + a2 j + a3 k    . b1 i + b2 j + b3 k

a . b  =  a1 b1 + a2 b2 + a3 b3

|a| |b| 

_____a . bcos θ  =  cos θ  =
a1 b1 + a2 b2 + a3 b3___________________________

√ a1
2 + a2

2 + a3
2 √ b1

2 + b2
2 + b3

2

1

2
Continued..



|a| |b| 

_____a . bcos θ   =  

3
Continued..

If   a   is perpendicular to   b

Then   θ  =  90⁰   cos θ  =  cos 90⁰ = 0

_____a . b0   =  
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|a| |b| 

_____a . b0   =  

a . b0   =  

So a       b

T

a . b = 0

Continued..



Continued..

a1 a2 a3__  =  __ =  __

4 If   a   &   b  are parallel to each other

b1 b2 b3

5 a  .  a   = |a| |a| cos 0
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5 a  .  a   = |a| |a| cos 0

|a|2 .  1

|a|2a  .  a   = 



Vector or Cross Product
 The Vector Product of two vectors is denoted by a × b

and defined as: 

a × b = |a| |b| sin θ . n
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a × b = |a| |b| sin θ . n

where:

|a| & |b| = magnitude
θ = angle between a & b
n = unit vector perpendicular to both a & b

Continued..



Continued.. a × b  = |a| |b| sin θ . n
we have

| a × b|  = |a| |b| sin θ . |n|

| a × b|  = |a| |b| sin θ |n| = 1

|a| |b| 

_____a × b
=  sin θ

Note:- 1

we have

Video  links Continued..

Note:- 2 a × b  = |a| |b| sin θ . n

we have

a × b  = |a| |b|                 n
putting formula of sin θ

|a| |b| 

_____| a × b |

a × b  =                   n| a × b | a × b  =  n

| a × b |

_____

So a unit vector  n  perpendicular 
to both   a  &  b  is given by



Geometrical representation of vector product

a

b

θ

n

a

b

O
M

B

A

OA  =  a

OB  =  b

a × b  = |a| |b| sin θ n

a × b  = |a| (|b| sin θ)   n

C
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a
M Aa × b  = |a| (|b| sin θ)   n

a × b  = |a| BM  n

| a × b |  =  |a| |BM|  
=  area of a parallelogram with sides  a  &  b 

sin θ = p

h 

BM

OB

BM

|b|

|b| sin θ = BM

__  = __  = __

area of a parallelogram 
=   base  × height

Area of ∆ ABC = ½ |a × b| 

Then it is concluded that:



Vector product in terms of components
Let a  = a1 i + a2 j + a3 k

b  = b1 i + b2 j + b3 k

And from a right handed system of mutually perpendicular vector
We have:
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We have:

i × j = k    or   j × i = -k 

j × k = i k × j = -i

k × i = j            i × k = -j 

k

i

j

And i × i =  j × j =  k × k  = 0

So
a × b  = i j     k

a1 a2 a3

b1 b2 b3


