$$
f(x)=\left\{\begin{array}{ll}
x, & 0 \leqslant x<\frac{1}{2} \\
\frac{1}{2}, & x=\frac{1}{2} \\
1-x, & \frac{1}{2}<x \leqslant 1
\end{array} \text { at } x=\frac{1}{2}\right.
$$

LIMITS

$$
\lim _{x \rightarrow a} f(x)=l
$$

PRAGYAN PRIYADARSINI LECTURER IN MATHEMATICS GOVT. POLYTECHNIC JAJPUR

LIMITS

Introduction

Example 1:

let's consider a function i.e. $f(x)$

$$
f(x)=2 x^{2}+3
$$

at $x=2, \quad f(2)=2(2)^{2}+3=2(4)+3=11$
at $x=-1, f(-1)=2(-1)^{2}+3=2(1)+3=5$

Thefunction $f(x)=2 x^{2}+3$ is defined for all $x \in \mathbb{R}$
Videa linkes

Example 2:
Lets consider another function

$$
f(x)=\frac{x^{2}-4}{x-2}
$$

at $x=1, f(1)=\frac{(1)^{2}-4}{1-2}=\frac{-3}{-1}=3$
at $x=-1, f(-1)=\frac{(-1)^{2}-4}{-1-2}=\frac{-3}{-3}=1$
at $x=2, f(2)=\frac{(2)^{2}-4}{2-2}=\frac{0}{0}$ (indeterminate form)
So clearly this function is defined for all x except 2 .
Although $f(x)=\frac{x^{2}-4}{x-2}$ is not defined at $x=2$
(i.e. its functional value at $x=2$ doesn't exist)

But we can study how this function behaves in the neighbourhood of $x=2$
by using the concept of LIMIT.
Videa links

The following table shows how the function behaves when we come closer to 2 . from both left hand side $\mathbb{H} H \mathbb{S}$ \& right hand side $\mathbb{R H} H$

x	1.7	1.8	1.9	1.99	2	2.01	2.1	2.2	2.3
$f(x)$	3.7	3.8	3.9	3.99	$\frac{0}{0}$	4.01	4.1	4.2	4.3

From the above table we observe that when x comes closer to 2 from L.H.S. $f(x)$ comes closer to 4 .
or
when x approaching to 2 from L. H.S. $f(x)$ tends to the limit 4.
or
when $x \rightarrow 2^{-}, f(x) \rightarrow 4$
or
i.e. $\lim _{x \rightarrow 2^{-}} f(x)=4$
\Longrightarrow Left hand limit (L.H.L)

From the above table we observe that when x comes closer to 2 from R.H.S. $f(x)$ comes closer to 4 also.
or
when x approaching to 2 from R.H.S. $f(x)$ tends to the limit 4.
or
when $x \rightarrow 2^{+}, f(x) \rightarrow 4$
or
i.e. $\lim _{x \rightarrow 2^{+}} f(x)=4$
\Longrightarrow Right hand limit (R.H.L)

Example 3:

let's consider a function i.e. $f(x)$
$f(x)=\frac{|x-4|}{x-4}$
at $x=4, \quad f(4)=\frac{|x-4|}{x-4}=\frac{0}{0}$
The function $f(x)$ is defined for all $x \in R$ except 4 .
So lets check how it behaves in the neighborhood of 4 by taking the help of limit.

x	3.7	3.8	3.9	3.99	4	4.01	4.1	4.2	4.3
$f(x)$	-1	-1	-1	-1	$\frac{0}{0}$	1	1	1	1

L. H. $L \Longrightarrow \lim _{x \rightarrow 4^{-}} f(x)=-1$
R.H.L $\Longrightarrow \lim _{x \rightarrow 4^{+}} f(x)=1$

Here L.H.L \neq R.H.L

Example 4

let's consider a function i.e. $f(x)$
$f(x)=\frac{1}{x-3}$
at $x=3, \quad f(3)=\frac{1}{3-3}=\frac{1}{0}$ (undefined form)
The function $f(x)$ is defined for all $x \in R$ except 3 .
So lets check how it behaves in the neighborhood of 3 by taking the help of limit.

x	2.8	2.9	2.99	2.999	3	3.001	3.01	3.1	3.2
$f(x)$	-5	-10	-100	-1000	$\frac{1}{0}$	1000	100	10	5

L.H.L $\Longrightarrow \lim _{x \rightarrow 3^{-}} f(x)=-\infty$ (doesn't exist)
R.H.L $\Longrightarrow \lim _{x \rightarrow 3^{+}} f(x)=\infty$ (doesn't exist)

Here we can't get any definite number

Existence of Limit

Note: from the earlier examples (1 to 4) we observe that for some functions
L.H.L = R.H.L (example 2)
L.H.L \neq R.H.L (example 3)
L.H.L \rightarrow Left Hand Limit
R.H.L \rightarrow Right Hand Limit
L.H.L or R.H.L or both not defined (example 4)

THEOREM: EXISTENCE OF LIMIT

If L.H.L = R.H.L, then we can say limit of the function exists.

Definition of Limit

- Let $f(x)$ be a function defined in neighborhood of ' a ', except ' a '.
- Let ' I ' be any number.
- Then we can say limit of $f(x)$ as ' x ' approaching to ' a ' is ' l '.
i.e.

$$
\lim _{x \rightarrow a} f(x)=l
$$

Note:

1. The limit depends upon the values of $f(x)$ in the neighborhood of ' a ', except ' a '.
2. The function $f(x)$ may or may not be defined at ' a '.

Neighborhood of a point

- Let's check neighborhood of point '2'.

Evaluation of L.H.L and R.H.L

- LEFT HAND LIMIT

To evaluate L.H. L of a function $f(x)$ at $x=a$ we have to follow the following steps step 1: write $\lim _{x \rightarrow a^{-}} f(x)$
step 2: put $x=a-h$
[replace $x \rightarrow a^{-}$by $h \rightarrow 0$]
$x \rightarrow a^{-}$
$a-h \rightarrow a$
$-h \rightarrow 0$
$h \rightarrow 0$
$\lim _{x \rightarrow a^{-}} f(x) \Longrightarrow \lim _{h \rightarrow 0} f(a-h)$
step 3: simplify $\lim _{h \rightarrow 0} f(a-h)$

- RIGHT HAND LIMIT

To evaluate R.H. L of a function $f(x)$ at $x=a$ we have to follow the following steps step 1: write $\lim _{x \rightarrow a^{+}} f(x)$
step 2: put $x=a+h$
[replace $x \rightarrow a^{+}$by $h \rightarrow 0$]
$x \rightarrow a^{+}$
$a+h \rightarrow a^{\not}$
$h \rightarrow 0$
$\lim _{x \rightarrow a^{+}} f(x) \Longrightarrow \lim _{h \rightarrow 0} f(a+h)$
step 3: simplify $\lim _{h \rightarrow 0} f(a+h)$

Videa linkes

Q1 Evaluate L.H.L and R.H.L where $f(x)=\left\{\begin{array}{ll}\frac{|x-4|}{x-4}, & x \neq 4 \\ 0, & x=4\end{array}\right.$ at $x=4$

- LEFT HAND LIMIT
$=\lim _{x \rightarrow 4^{-}} f(x)$
$=\lim _{x \rightarrow 4^{-}} \frac{|x-4|}{x-4}\{$ put $x=4-h\}$
$=\lim _{h \rightarrow 0} \frac{|(4-h)-4|}{(4-h)-4}$
$=\lim _{h \rightarrow 0} \frac{|-h|}{h}$
$=\lim _{h \rightarrow 0} \frac{h}{-h}$
$=\lim _{h \rightarrow 0}-1$
$=-1$
- RIGHT HAND LIMIT
$=\lim _{x \rightarrow 4^{+}} f(x)$
$=\lim _{x \rightarrow 4^{+}} \frac{|x-4|}{x-4}\{$ put $x=4+h\}$
$=\lim _{h \rightarrow 0} \frac{|(4+h)-4|}{(4+h)-4}$
$=\lim _{h \rightarrow 0} \frac{|h|}{h}$
$=\lim _{h \rightarrow 0} \frac{h}{h}$
$=\lim _{h \rightarrow 0} 1$
$=1$
L.H.L \neq R.H.L $\Rightarrow \lim _{x \rightarrow 4} f(x)$ doesn't exist

Q2 \quad If $f(x)= \begin{cases}\frac{x-|x|}{x}, & x \neq 0 \\ 2, & x=4\end{cases}$ check whether $\lim _{x \rightarrow 0} f(x)$ exists or not

$$
\begin{array}{l|l}
& \bullet \text { LEFT HAND LIMIT } \\
=\lim _{x \rightarrow 0^{-}} f(x) & \\
=\lim _{x \rightarrow 0^{+}} f(x) \\
=\lim _{x \rightarrow 0^{-}} \frac{x-|x|}{x}\{\text { put } x=0-h\} & =\lim _{x \rightarrow 0^{+}} \frac{x-|x|}{x}\{\text { put } x=0+h\} \\
=\lim _{h \rightarrow 0} \frac{-h-|-h|}{-h} & =\lim _{h \rightarrow 0} \frac{h-|h|}{h} \\
=\lim _{h \rightarrow 0} \frac{-h-h}{-h} & =\lim _{h \rightarrow 0} \frac{h-h}{h} \\
=\lim _{h \rightarrow 0} \frac{-2 h}{-h} & =\lim _{h \rightarrow 0} \frac{0}{h} \\
=\lim _{h \rightarrow 0}+2 & =\lim _{h \rightarrow 0} 0 \\
=2 &
\end{array}
$$

Q3 If $f(x)= \begin{cases}5 x-4, & 0<x \leqslant 1 \\ 4 x^{3}-3 x, & 1<x<2\end{cases}$
show that $\lim _{x \rightarrow 1} f(x)$ exists

- LEFT HAND LIMIT $(x<a)$
$=\lim _{x \rightarrow 1^{-}} f(x)$
$=\lim _{x \rightarrow 1^{-}} 5 x-4\{$ put $x=1-h\}$
$=\lim _{h \rightarrow 0} 5(1-h)-4$
$=5(1-0)-4$
$=5(1)-4$
$=5-4$
$=1$

Note:

1. $f(x)$ at $x=a\{$ i.e. functional value of $f(x)\}$
2. $f(x)$ at $x \neq a$ \{i.e. functional value of $f(x)\}$ L.H.L. $\rightarrow x<a \quad$ R.H.L. $\rightarrow x>a$

- RIGHT HAND LIMIT $(x>a)$
$=\lim _{x \rightarrow 1^{+}} f(x)$
$=\lim _{x \rightarrow 1^{+}} 4 x^{3}-3 x\{$ put $x=1+h\}$
$=\lim _{h \rightarrow 0} 4(1+h)^{3}-3(1+h)$
$=4(1+0)^{3}-3(1+0)$
$=4(1)^{3}-3(1)$
$=4-3$
$=1$

$$
\text { L.H.L }=\text { R.H.L } \Rightarrow \lim _{x \rightarrow 1} f(x)=1 \text { exists }
$$

$$
f(x)=4 x^{3}-3 x
$$

$$
f(x)=5 x-4
$$

Q4 Examine the existence of the function

$$
\text { If } f(x)=\left\{\begin{array}{ll}
x, & 0 \leqslant x<\frac{1}{2} \\
\frac{1}{2}, & x=\frac{1}{2} \\
1-x, & \frac{1}{2}<x \leqslant 1
\end{array} \quad \text { at } x=\frac{1}{2}\right.
$$

- LEFT HAND LIMIT $(x<1 / 2)$

$$
=\lim _{x \rightarrow \frac{1}{2}^{-}} f(x)
$$

$=\lim _{x \rightarrow \frac{1}{2}^{-}} x\left\{\right.$ put $\left.x=\frac{1}{2}-h\right\}$
$=\lim _{h \rightarrow 0} \frac{1}{2}-h$
$=\frac{1}{2}-0$
$=\frac{1}{2}$

- RIGHT HAND LIMIT $(x>1 / 2)$
$=\lim _{x \rightarrow \frac{1}{2}^{+}} f(x)$
$=\lim _{x \rightarrow \frac{1^{+}}{}} 1-x\left\{\right.$ put $\left.x=\frac{1}{2}+h\right\}$
$=\lim _{h \rightarrow 0} 1-\left(\frac{1}{2}+h\right)$
$=1-\left(\frac{1}{2}+0\right)$
$=\frac{1}{2}$
L.H.L $=$ R.H.L $\Rightarrow \lim _{x \rightarrow \frac{1}{2}} f(x)=\frac{1}{2}$ exists

Q5 Show that $\lim _{x \rightarrow 0} \frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}$ doesn't exist

- LEFT HAND LIMIT
- RIGHT HAND LIMIT
$=\lim _{x \rightarrow 0^{-}} f(x)$
$=\lim _{x \rightarrow 0^{+}} f(x)$
$=\lim _{x \rightarrow 0^{-}} \frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}\{$ put $x=0-h\} \quad=\lim _{x \rightarrow 0^{+}} \frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}\{$ put $x=0+h\}$
$=\lim _{h \rightarrow 0} \frac{e^{\frac{1}{(0-h)}}-1}{e^{\frac{1}{(0-h)}}+1} e^{\left(\frac{\infty}{\infty}\right)}$
$=\lim _{h \rightarrow 0} \frac{e^{\frac{-1}{h}}-1}{e^{\frac{-1}{h}}+1}$
$=\lim _{h \rightarrow 0} \frac{\frac{1}{e^{\frac{1}{h}}}-1}{\frac{1}{e^{\frac{1}{h}}}+1}$
$=\frac{0-1}{0+1}$
$=-1$

$$
\begin{aligned}
&\left(\begin{array}{l}
h \rightarrow 0 \\
\frac{1}{h} \rightarrow \infty \\
e^{\frac{1}{h}} \rightarrow \infty \\
\frac{1}{e^{\frac{1}{h}}} \rightarrow 0
\end{array}\right.=\lim _{h \rightarrow 0} \frac{e^{\frac{1}{e^{(0+h)}}}-1}{e^{\frac{1}{(0+h)}}+1} \\
&=\lim _{h \rightarrow 0} \frac{e^{\frac{1}{h}}-1}{e^{\frac{1}{h}}+1} \\
& 1+\frac{1}{e^{\frac{1}{h}}} \\
& 1+\frac{1}{e^{\frac{1}{h}}} \\
&=\frac{1-0}{1+0} \\
&=1
\end{aligned}
$$

Greatest Integer function

$$
[x]= \begin{cases}n, & x=n \\ n-1, & n-1 \leqslant x<n\end{cases}
$$

Example :
$[5]=5$
$[3]=3$
$[-3]=-3$
$\left[\frac{25}{3}\right]=[8.3]=8$ as $8<8.3<9$

Q6 Examine the existence of $\lim _{x \rightarrow 3}[x]$

- LEFT HAND LIMIT
$=\lim _{x \rightarrow 3^{-}}[x]\{$ put $x=3-h\}$
$=\lim _{h \rightarrow 0}[3-h]$
$=2$

$$
\begin{array}{|l}
3-h=2.9999 \text { (approximate) } \\
2<2.9999<3 \\
2<3-h<3 \\
\text { so }[3-h]=2
\end{array}
$$

- RIGHT HAND LIMIT
$=\lim _{x \rightarrow 3^{+}}[x]\{$ put $x=3+h\}$
$=\lim _{h \rightarrow 0}[3+h]$
$=3$

$$
\begin{aligned}
& 3+h \approx 3.0001 \\
& 3<3.0001<4 \\
& 3<3+h<4 \\
& \text { so }[3+h]=3
\end{aligned}
$$

L.H.L \neq R.H.L $\Rightarrow \lim _{x \rightarrow 3}[x]$ doesn't exist

Q7 Examine the existence of $\lim _{x \rightarrow \frac{5}{2}}[x]$

- LEFT HAND LIMIT
$=\lim _{x \rightarrow\left(\frac{5}{2}\right)^{-}}[x]\left\{\right.$ put $\left.x=\frac{5}{2}-h\right\}$
$=\lim _{h \rightarrow 0}\left[\frac{5}{2}-h\right]$
$=\lim _{h \rightarrow 0}[2.5-h]$
$=2$

$$
\begin{aligned}
& \frac{5}{2}-h \approx 2.4999 \\
& 2<2.4999<3 \\
& 2<2.5-h<3 \\
& \text { so }[2.5-h]=2
\end{aligned}
$$

- RIGHT HAND LIMIT

$$
\begin{aligned}
& =\lim _{x \rightarrow\left(\frac{5}{2}\right)^{+}}[x]\left\{\text { put } x=\frac{5}{2}+h\right\} \\
& =\lim _{h \rightarrow 0}\left[\frac{5}{2}+h\right] \\
& =\lim _{h \rightarrow 0}[2.5+h] \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
& \frac{5}{2}+h \approx 2.5999 \\
& 2<2.5999<3 \\
& 2<2.5+h<3 \\
& \text { so }[2.5+h]=2
\end{aligned}
$$

L.H.L $=$ R.H.L $\Rightarrow \lim _{x \rightarrow \frac{5}{2}}[x]$ exists

Evaluation of Limit

Evaluation of limit is divided into two parts:

- Evaluation of algebraic limit. 5 different methods

1. Direct Substitution method
2. Factorisation method
3. Rationalisation method
4. Evaluation of limit at infinity
5. Evaluation of limit using some standard formulas.

- Evaluation of non-algebraic limit.

1. Evaluation of limit using

 some standard formulas.
EVALUATION OF ALGEBRAIC LIMITS

5 different methods

I. Direct Substitution method
2. Factarisation methad
3. Rationalisation method
4. Evaluation of limit at infinity
5. Evaluation of limit using some standard formulas.

1. Direct substitution method

Q1 Evaluate $\lim _{x \rightarrow 2} 4 x^{2}+3$
Solution: $\lim _{x \rightarrow 2} 4 x^{2}+3$

$$
\begin{aligned}
& =4(2)^{2}+3 \\
& =4(4)+3 \\
& =16+3 \\
& =19
\end{aligned}
$$

Q2 Evaluate $\lim _{x \rightarrow 2} \frac{x^{2}+3}{x-1}$
Solution: $\lim _{x \rightarrow 2} \frac{x^{2}+3}{x-1}$

$$
\begin{aligned}
& =\frac{(2)^{2}+3}{2-1} \\
& =\frac{4+3}{1} \\
& =7
\end{aligned}
$$

1. Direct substitution method

Q3 Evaluate $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}+\sqrt{1-x}}{1-x}$
Solution: $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}+\sqrt{1-x}}{1-x}$

$$
=\frac{\sqrt{1+0}+\sqrt{1-0}}{1-0}
$$

$$
=\frac{\sqrt{1}+\sqrt{1}}{1}
$$

$$
=\frac{1+1}{1}
$$

$$
=\frac{2}{1}
$$

$$
=2
$$

2. Factorisation method

Q1 Evaluate $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}\left(\frac{0}{0}\right) \\
& =\lim _{x \rightarrow 4} \frac{(x-4)(x+4)}{x-4} \\
& =\lim _{x \rightarrow 4} x+4 \\
& =4+4 \\
& =8
\end{aligned}
$$

NOTE

If after substituting $x=a$ in $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ gives $\frac{0}{0}$, then use factorisation methods. Step1 \rightarrow factorise either $f(x)$ or $g(x)$ or both. Step2 \rightarrow cancel out common factor if any. Step3 \rightarrow use direct substitution method again.

2. Factorisation method

Q2 Evaluate $\lim _{x \rightarrow 1} \frac{x^{2}-4 x+3}{x^{2}-6 x+5}$
Solution: $\lim _{x \rightarrow 1} \frac{x^{2}-4 x+3}{x^{2}-6 x+5} \quad\left(\frac{0}{0}\right)$

$$
=\lim _{x \rightarrow 1} \frac{x^{2}-3 x-x+3}{x^{2}-5 x-x+5}
$$

$$
=\lim _{x \rightarrow 1} \frac{x(x-1)-3(x-1)}{x(x-1)-5(x-1)}
$$

$$
=\lim _{x \rightarrow 1} \frac{(x-1)(x-3)}{(x-1)(x-5)}
$$

$$
=\lim _{x \rightarrow 1} \frac{(x-3)}{(x-5)}
$$

$$
=\frac{1-3}{1-5}=\frac{-2}{-4}=\frac{1}{2}
$$

3. Rationalisation method

NOTE

if there is a square root term either in Numerator and Denominator or both and after putting $x=a$ directly in $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ gives $\frac{0}{0}$ form then use Rationalisation method.

METHOD

1. Multiply the conjugate of the square root term both in numerator and denominator.
2. Then simplify.

3. Rationalisation method

Q1 Evaluate $\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}\left(\frac{0}{0}\right) \\
& =\lim _{x \rightarrow 0} \frac{(\sqrt{x+1}-1)(\sqrt{x+1}+1)}{x(\sqrt{x+1}+1)} \\
& =\lim _{x \rightarrow 0} \frac{x+1-1}{x(\sqrt{x+1}+1)} \\
& =\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+1}+1)} \\
& =\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+1}+1}=\frac{1}{\sqrt{0+1}+1}=\frac{1}{\sqrt{1}+1}=\frac{1}{1+1}=\frac{1}{2}
\end{aligned}
$$

3. Rationalisation method

Q2 Evaluate $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{2 x}$
Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}\left(\frac{0}{0}\right)}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{(\sqrt{1+x}-\sqrt{1-x})(\sqrt{1+x}+\sqrt{1-x})}{2 x(\sqrt{1+x}+\sqrt{1-x})} \\
& =\lim _{x \rightarrow 0} \frac{(\sqrt{1+x})^{2}-(\sqrt{1-x})^{2}}{2 x(\sqrt{1+x}+\sqrt{1-x})}=\lim _{x \rightarrow 0} \frac{(1+x)-(1-x)}{2 x(\sqrt{1+x}+\sqrt{1-x})} \\
& =\lim _{x \rightarrow 0} \frac{1+x-1+x}{2 x(\sqrt{1+x}+\sqrt{1-x})}=\lim _{x \rightarrow 0} \frac{2 x}{2 x(\sqrt{1+x}+\sqrt{1-x})} \\
& =\lim _{x \rightarrow 0} \frac{1}{\sqrt{1+x}+\sqrt{1-x}}=\frac{1}{\sqrt{1+0}+\sqrt{1-0}}=\frac{1}{\sqrt{1}+\sqrt{1}}=\frac{1}{2}
\end{aligned}
$$

4. Evaluation of limit at infinity

METHOD

Step1 \rightarrow the expression should be a rational function, if not convert it into a rational function
i.e. $\frac{f(x)}{g(x)}$

Step2 \rightarrow if k is the heighest power of x then divide each term of numerator \& denominator by x^{k}.
Step3 \rightarrow use $\lim _{x \rightarrow \infty} \frac{1}{x^{k}}=0, k>0$.

4. Evaluation of limit at infinity

Q1 Evaluate $\lim _{x \rightarrow \infty} \frac{3 x^{2}+4 x-1}{2 x^{2}+x+2}$
Solution: $\lim _{x \rightarrow \infty} \frac{3 x^{2}+4 x-1}{2 x^{2}+x+2}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\frac{3 x^{2}}{x^{2}}+\frac{4 x}{x^{2}}-\frac{1}{x^{2}}}{\frac{2 x^{2}}{x^{2}}+\frac{x}{x^{2}}+\frac{2}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{3+\frac{4}{x}-\frac{1}{x^{2}}}{2+\frac{1}{x}+\frac{2}{x^{2}}}
\end{aligned}
$$

$$
=\frac{\lim _{x \rightarrow \infty} 3+\lim _{x \rightarrow \infty} \frac{4}{x}-\lim _{x \rightarrow \infty} \frac{1}{x^{2}}}{\lim _{x \rightarrow \infty} 2+\lim _{x \rightarrow \infty} \frac{1}{x}+\lim _{x \rightarrow \infty} \frac{2}{x^{2}}}
$$

$$
=\frac{3+0-0}{2+0+0}=\frac{3}{2}
$$

4. Evaluation of limit at infinity

Q2 Evaluate $\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}-1}$
Solution: $\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}-1}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\frac{x}{x}}{\frac{\sqrt{x^{2}+1}}{x}-\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{\frac{x^{2}+1}{x^{2}}}-\frac{1}{x}}
\end{aligned}
$$

$$
=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{x^{2}}}-\frac{1}{x}}
$$

$$
=\frac{1}{\sqrt{1+0}-0}=\frac{1}{\sqrt{1}}=\frac{1}{1}=1
$$

4. Evaluation of limit at infinity

Q3 Evaluate $\lim _{n \rightarrow \infty} \frac{1+2+3+\cdots+n}{n^{2}}$

Solution: $\lim _{n \rightarrow \infty} \frac{1+2+3+\cdots+n}{n^{2}}$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{\frac{n(n+1)}{2}}{n^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{n(n+1)}{2 n^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}+n}{2 n^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{n^{2}}{n^{2}}+\frac{n}{n^{2}}}{\frac{2 n^{2}}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}}{2}=\frac{1+0}{2}=\frac{1}{2}
\end{aligned}
$$

4. Evaluation of limit at infinity

Q4 Evaluate

$$
\lim _{n \rightarrow \infty} \frac{n!}{(n+1)!-n!}
$$

Solution:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n!}{(n+1)!-n!} \\
& =\lim _{n \rightarrow \infty} \frac{n!}{(n+1) n!-n!} \\
& =\lim _{n \rightarrow \infty} \frac{n!}{n!(n+1-1)} \\
& =\lim _{n \rightarrow \infty} \frac{1}{1(n+1-1)} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}=\frac{1}{\infty}=0
\end{aligned}
$$

5. Evaluation of limit using standard formulas

5. Evaluation of limit using standard formulas

Q1 Evaluate $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$

Solution: $\quad \lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$

FORMULA

$$
\begin{aligned}
& =\lim _{x \rightarrow 3} \frac{(x)^{2}-(3)^{2}}{x-3} \\
& =2(3)^{2-1} \\
& =2(3) \\
& =6
\end{aligned}
$$

$$
\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}, a>0
$$

$$
\begin{aligned}
& n=2 \\
& a=3
\end{aligned}
$$

5. Evaluation of limit using standard formulas

Q2 Evaluate $\quad \lim _{x \rightarrow 0} \frac{(x+9)^{\frac{3}{2}}-27}{x}$
Solution:

$$
\lim _{x \rightarrow 0} \frac{(x+9)^{\frac{3}{2}}-27}{x}
$$

$$
\begin{aligned}
& \begin{aligned}
& \text { variable is } x+9 \\
& \begin{array}{l}
x \rightarrow 0 \\
x+9 \rightarrow 9
\end{array}=\lim _{x \rightarrow 0} \frac{(x+9)^{\frac{3}{2}}-(9)^{\frac{3}{2}}}{(x+9)-9}
\end{aligned}=\lim _{x+9 \rightarrow 9} \frac{(x+9)^{\frac{3}{2}}-(9)^{\frac{3}{2}}}{(x+9)-9} \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}, a>0 \\
&=\frac{3}{2}(9)^{\frac{3}{2}-1} \\
&=\frac{3}{2}(9)^{\frac{1}{2}} \\
&=\frac{3}{2}(3)=\frac{3}{2} \\
& a=9
\end{aligned}
$$

EVALUATION OF NON-ALGEBRAIC LIMITS

FORMULAS

1. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
2. $\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=1$
3. $\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$
4. $\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=1$
5. $\lim _{x \rightarrow 0} \frac{\log (x+1)}{x}=1$
6. $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
7. $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\log a \quad(a>0)$

Evaluation of non-algebraic limits

Q1 Evaluate $\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}$

Solution: $\quad \lim _{x \rightarrow 0} \frac{\sin 4 x}{x}$
$=\lim _{x \rightarrow 0} \frac{4 \sin 4 x}{4 x}$
$=4 \lim _{4 x \rightarrow 0} \frac{\sin 4 x}{4 x}$
FORMULA
$=4(1)$
$=4$

Evaluation of non-algebraic limits

Q2 Evaluate $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\tan 3 x}$
Solution: $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\tan 3 x}$

$$
\begin{array}{ll}
=\frac{\lim _{x \rightarrow 0} \sin 5 x}{\lim _{x \rightarrow 0} \tan 3 x} & \\
=\frac{\lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x} * \frac{5 x}{1}}{\lim _{x \rightarrow 0} \frac{\tan 3 x}{3 x} * \frac{3 x}{1}} & \text { FORMULA } \\
=\frac{5}{3} \frac{\lim _{5 x \rightarrow 0} \frac{\sin x}{x}=1}{\lim _{3 x \rightarrow 0} \frac{\tan 3 x}{3 x}} \\
=\frac{5}{3} * \frac{1}{1}=\frac{5}{3} & \lim _{x \rightarrow 0} \frac{\tan x}{x}=1
\end{array}
$$

$$
\begin{aligned}
& x \rightarrow 0 \\
& 5 x \rightarrow 0 \\
& 3 x \rightarrow 0
\end{aligned}=\frac{\lim _{x \rightarrow 0} \frac{\tan 3 x}{3 x} * \frac{3 x}{1} \frac{\lim _{5 x \rightarrow 0}}{\lim _{3 x \rightarrow 0} \frac{\sin 5 x}{5 x}} \frac{\tan 3 x}{3 x}}{}
$$

Evaluation of non-algebraic limits

Q3 Evaluate $\lim _{x \rightarrow 0} \frac{1+\cos x}{x^{2}+1}$
Solution: $\lim _{x \rightarrow 0} \frac{1+\cos x}{x^{2}+1}$

$$
\begin{aligned}
& =\frac{1+\cos 0}{0^{2}+1} \\
& =\frac{1+1}{1} \\
& =\frac{2}{1}=2
\end{aligned}
$$

Evaluation of non-algebraic limits

Q4 Evaluate $\lim _{x \rightarrow 0} \frac{e^{\sin x}-1}{x}$

Evaluation of non-algebraic limits

Q5 Evaluate $\lim _{x \rightarrow 0} \frac{\csc x-\cot x}{x}$
Solution: $\lim _{x \rightarrow 0} \frac{\csc x-\cot x}{x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\frac{1}{\sin x}-\frac{\cos x}{\sin x}}{x} \\
& =\lim _{x \rightarrow 0} \frac{1-\cos x}{x * \sin x} \\
& =\lim _{x \rightarrow 0} \frac{(1-\cos x)}{x * \sin x} * \frac{\sin x}{\sin x} \\
& =\lim _{x \rightarrow 0} \frac{(1-\cos x) \sin x}{x * \sin ^{2} x}
\end{aligned}
$$

$$
\text { FORMULA } \quad \lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

Evaluation of non-algebraic limits

Q6 Evaluate $\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{\sin ^{3} x}$
Solution:

$$
\begin{array}{ll}
\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{\sin ^{3} x} & =\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin ^{2} x * \cos x} \\
=\lim _{x \rightarrow 0} \frac{\frac{\sin x}{\cos x}-\sin x}{\sin ^{3} x} & =\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin ^{2} x * \cos x} \\
=\lim _{x \rightarrow 0} \frac{\sin x-\sin x * \cos x}{\sin ^{3} x * \cos x} & =\lim _{x \rightarrow 0} \frac{1-\cos x}{\left(1-\cos ^{2} x\right) \cos x} \\
=\lim _{x \rightarrow 0} \frac{\sin x(1-\cos x)}{\sin ^{3} x * \cos x} & =\lim _{x \rightarrow 0} \frac{1-\cos x}{(1-\cos x)(1+\cos x) \cos x} \\
=\lim _{x \rightarrow 0} \frac{\sin x(1-\cos x)}{\sin ^{3} x * \cos x} & =\lim _{x \rightarrow 0} \frac{1}{(1+\cos x) \cos x} \\
=\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin ^{2} x * \cos x} & =\frac{1}{(1+\cos 0) \cos 0}=\frac{1}{(1+1) 1}=\frac{1}{2}
\end{array}
$$

Videa linkes

Evaluation of non-algebraic limits

Q7 Evaluate $\quad \lim _{x \rightarrow 1} \frac{\log (2 x-1)}{x-1}$

$$
\begin{aligned}
\text { Solution: } & \lim _{x \rightarrow 1} \frac{\log (2 x-1)}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{\log (2 x-2+1)}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{\log \{2(x-1)+1\}}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{2}{2} * \frac{\log \{2(x-1)+1\}}{x-1} \\
& =2 \lim _{x \rightarrow 1} \frac{\log \{2(x-1)+1\}}{2(x-1)} \\
\begin{array}{ll}
\lim _{x \rightarrow 0} \frac{\log (x+1)}{x}=1 \\
x-1 \rightarrow 0 \\
2(x-1) \rightarrow 0
\end{array} & =2 \lim _{2(x-1) \rightarrow 0} \frac{\log \{2(x-1)+1\}}{2(x-1)}=2 * 1=2
\end{aligned}
$$

Evaluation of non-algebraic limits

Q8 Evaluate $\lim _{h \rightarrow 0} \frac{\tan (x+h)-\tan x}{h}$
Solution:

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\tan (x+h)-\tan x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}}{h}
\end{aligned}
$$

- : CONTINOITY AND DISCONTINUITY OF FUNCTIONS :-

Definition:-
A function $f(x)$ is said to be cosdinusus at $x=a$ if
(i) limiting valure exists. (i.e. L.H.L $=K \cdot H . L$)

$$
\Rightarrow \lim _{x \rightarrow 2} f(x) \text { exiets }
$$

(ii) $f($ a) exists (i.e. functional value exists)
(ii) $\lim _{x \rightarrow 2} f(x)=f(a)$.

Nore: - In case of at hase sne of the abone. condition fails, then the function is discoulinuses

Reabow it Discontimuity

At oll the above thrise pts (i.e. a, b, c) function $y=f(x)$

- is dis-ciantinars.
(1) At $x=a$: - n thes PH. F.H.L \neq F.H.L
as $\lim _{x \rightarrow a^{-}}=\beta$ and $\lim _{x \rightarrow a^{+}}=$? at $x=a$.
Geometrical Reprosentation:-
(2) Discontinuar
(3) Discuntinnous
(1) y continuous.

Here $\lim _{x \rightarrow a} f(x)=1$
(iii) $f(a)=m$
(Iii) But bothe are
\Rightarrow lionit dossitenest
not equal.
(ii) $f(a)=m$
(2) At $x=b$ - At Pt. 'b' L H HL $=R \cdot H \cdot L$
as $\lim _{x \rightarrow 5}=\beta$ and $\lim _{x \rightarrow 5}=\beta \Rightarrow$ limit enists.
Sut $f(b)$ is not sefined.
so $f(x)$ is discontinuous at $x=b$.

(ii) $f(c)$ is defined i-e $f(c)=\alpha$

But $\lim _{x \rightarrow c} f(x) \neq f(c)$
So $f(x)$ is discontinutus at $x=c$

* Examine the continuity if each if the followings:
Q. $f(x)=\left\{\begin{array}{cc}x^{2}+2, & x>1 \\ 2 x+1, & x=1 \\ 3, & x<1\end{array}\right.$ at $x=1$

Solution:-
case I:- (limiting Value).

$$
\begin{aligned}
(x<1) \frac{L \cdot H \cdot L}{\lim _{x \rightarrow 1^{-}} f(x)} f & \lim _{x \rightarrow 1^{+}} f(x) \cdot H \cdot(4 t \times 1)(x>1) \\
=\lim _{x \rightarrow 1^{-}} 3 & =\lim _{x \rightarrow 1^{+}} x^{2}+2 \\
\text { put } x=1-h & \text { put } x=1+h \\
=\lim _{h \rightarrow 0} 3 & =\lim _{h \rightarrow 0}(1+h)^{2}+2 \\
=3 & =(1+0)^{2}+2=3
\end{aligned}
$$

as L.H.L $=$ R. HL
$\Rightarrow \lim _{x \rightarrow 1} f(x)$ exist s.
and $\lim _{x \rightarrow 1} f(x)=3 \ldots$
Case II:- (functional value).

$$
\begin{aligned}
& \text { At } x=1, f(x)=2 x+1 \\
& \Rightarrow f(1)=2(1)+1 \\
&=3 \\
& \text { case III:- } \lim _{x \rightarrow 1} f(x)=3=f(1)
\end{aligned}
$$

$\therefore f(x)$ is continuous at $x=1$.

Solution:-
cos I:- (limiting value).

$$
\begin{aligned}
& \text { L.H.L }(\text { at } x=0) \\
& \lim _{x \rightarrow 0^{-}} f(x) \\
& =\lim _{x \rightarrow 0^{-}} x-\frac{|x|}{x} \\
& \text { put } x=0-h=-h \\
& =\lim _{h \rightarrow 0}-h-\frac{|-h|}{-h} \\
& =\lim _{h \rightarrow 0}-h-\frac{h}{-h} \\
& =\lim _{h \rightarrow 0}-h+1 \\
& =0+1 \\
& =1
\end{aligned}
$$

Here L-H.L $\neq R \cdot H \cdot L$

$$
\Rightarrow \lim _{x \rightarrow 0} f(x) \text { daren } n^{2}+\text { exists }
$$

So $f(x)$ is dis continuous at $x=0$.
Q. 3

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-9}{x-3}, & , x \neq 3 \\
6 & , x=3
\end{array} \text { at } x=3\right.
$$

Solution:-
case I (Limiting Value)

$$
\begin{aligned}
& \lim _{x \rightarrow 3} f(x) \\
= & \lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}\left(\frac{0}{0}\right) \\
= & \lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{(x-3)} \\
= & \lim _{x \rightarrow 3} x+5 \\
= & 3+3 \\
= & 6 \\
\Rightarrow & \lim _{x \rightarrow 3} f(x)=6
\end{aligned}
$$

Cos II (functional value)
At $x=3, f(x)=6$

$$
\Rightarrow f(9)=6
$$

case III $\lim _{x \rightarrow 3} f(x)=6=f(3)$
\therefore So $f(x)$ is continuous of $x=3$.
Q.4. For what value of k the function

$$
f(x)=\left\{\begin{array}{cc}
\frac{\sin 2 x}{x}, & x \neq 0 \\
k, & x=0
\end{array} \text { at } x=0\right.
$$

Solution:-
case I (limiting value)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x) \\
= & \lim _{x \rightarrow 0} \frac{\sin 2 x}{x} \\
= & \lim _{x \rightarrow 0} 2 \cdot \frac{\sin 2 x}{2 x} \\
= & 2 \lim _{2 x \rightarrow 0} \frac{\sin 2 x}{2 x}\left(\begin{array}{l}
\text { as } \\
x \rightarrow 0 \\
2 x \rightarrow 0
\end{array}\right) \\
= & 2 \times 1 \\
= & 2 \\
\Rightarrow & \lim _{x \rightarrow 0} f(x)=2
\end{aligned}
$$

cos II (functional value)
at $x=0 \quad f(x)=K$

$$
\Rightarrow f(0)=k
$$

cosesis It is given that $f(x)$ is continesue of $x=0$

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 0} f(x)=f(0) \\
& \Rightarrow 2=K \quad \text { (thus) }
\end{aligned}
$$

Q.5 for what value if ' a ' and b '

$$
\begin{aligned}
& \text { Q. } 5 \text { for what value it } \\
& f(x)=\left\{\begin{array}{cc}
a x^{2}+b, & x<1 \\
1, & x=1 \\
2 a x-b, & x>1
\end{array}\right.
\end{aligned}
$$

Solution:-
Case I (limiting value)

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x) \quad \frac{\text { R.HL } 1 \text { at } x=1)}{\left.\lim _{x \rightarrow 1^{+}} f(x) x=1\right)(x>1)} \\
& =\lim _{x \rightarrow 1^{-}} a x^{2}+b \\
& \text { put } x=1-h \\
& =\lim _{h \rightarrow 0} a(1-h)^{2}+b \\
& =a(1-0)^{2}+b \\
& =a+b
\end{aligned}
$$

caus III $\lim _{x \rightarrow 1} f(x)=f(1)$ (as $f(x)$ is cont incuses)

$$
\begin{align*}
& \Rightarrow \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1) \\
& \Rightarrow a+b=2 a-b=1
\end{align*}
$$

from above $\quad a+b=1$

$$
\begin{equation*}
2 a-b=1 \tag{I}
\end{equation*}
$$

Solving (1) x (ii) $\Rightarrow 3 a=2$

$$
a=2 / 3
$$

putting $a=2 / 3$ in e^{n} (1)

$$
\begin{aligned}
& 2 / 3+b=1 \\
& \Rightarrow b=1-2 / 3=\frac{3-2}{3} \\
& \Rightarrow b=\frac{1}{3}
\end{aligned}
$$

Q.6 Show that $f(x)=\left\{\begin{array}{cc}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ is contimenens \quad at $x=0$.

Solution:-
case I (limiting value)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x) \\
= & \lim _{x \rightarrow 0} x \sin \frac{1}{x} \\
= & \lim _{x \rightarrow 0} x \times \lim _{x \rightarrow 0} \sin \frac{1}{x}
\end{aligned}
$$

$=0 \times$ afinite quantity

$$
=0
$$

Thus, $\lim _{x \rightarrow 0} f(x)=0$
Cav II (functional value)

$$
\text { At } \begin{aligned}
x=0, & f(x)
\end{aligned}=0
$$

cosily finally, $\lim _{x \rightarrow 0} f(x)=0=f(0)$
Hence, $f(x)$ is continuous at $x=0$
Q.7:- Examine the cousenuity of the function.

$$
f(x)=\left\{\begin{array}{cl}
(1+2 x)^{1 / x}, & x \neq 0, \\
e^{2}, & \text { at } x=0
\end{array}\right.
$$

Solution:-
case I:- (limiting value)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x) \\
&= \lim _{x \rightarrow 0}(1+2 x)^{1 / x} \\
&= \lim _{x \rightarrow 0}\left\{(1+2 x)^{\frac{1}{2 x}}\right\}^{2} \\
& \text { as } x \rightarrow 0>2 x \rightarrow 0 \\
&= \lim _{2 x \rightarrow 0}\left\{(1+2 x)^{1 / x}\right\}^{2}
\end{aligned}
$$

$=e^{2} \quad$ (using $\lim _{x \rightarrow 0}(1+x)^{1 / x}=e$)
Case II:-(functianal value)
at $x=0 \quad f(x)=e^{2}$

$$
f(0)=c^{2}
$$

Case III :- $\lim _{x \rightarrow 0} f(x)=e^{2}-f(0)$
Thus, $f(x)$ is continuer at $x=0$.

$$
\longleftarrow \theta \theta Q \longrightarrow
$$

Chapters
\therefore DERIVATIVES:-

Concept of Derivative' (1) Derivative means the rate of change. of a function with respect to a variable.
or
(3) Geometrically, Dircivatine means the slope of the tangent of the curve at a pt. 'p'.
qcamtrical Interpretation of Derivative:-

Now Slope of secant $P ?,=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{\text { change in } y}{\text { change in } x}$.

$$
\Rightarrow \text { slope of } P Q_{1}=\frac{f(x+h)-f(x)}{h}
$$

- Let's, approach h towards 0

$$
\begin{array}{ll}
\text { i.e. } h \rightarrow 0 \\
\Rightarrow & Q \rightarrow P
\end{array}
$$

Then the secant O becomes the line 1 which is the tangent to the curve $y-f(x)$

Shan slope of the tangent

$$
=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

which is the derivative of the function at the pt ' 'p'.

Notations of derivative: $y=f(x)$ be the function, then derivative is denoted by

$$
y^{\prime} \text { of } f^{\prime}(x) \text { ar } y_{1} \text { or } \frac{d y}{d x} \text { or } D y
$$

* from the tecomatrical Meaning
we have

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- known as first primuple methad to find derivation
Or knotan is Δ-Method.

Standard ferrules of Burivitive:-

Derivative of algebraic function.

Derivative of Layarithenit function.

Derivative of exponenidel function-

Berevative of 'rganamatric function.

	function Y ar $f(x)$	Denvative $\frac{d y}{d x} \operatorname{ar} f^{\prime}(x)$
16	$\sin ^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}}$
17	$\cos ^{-1} x$	$\frac{-1}{\sqrt{1-x^{2}}}$
18	$\tan ^{-1} x$	$\frac{1}{1+x^{2}}$
19	$\cot ^{-1} x$	$\frac{-1}{1+x^{2}}$
20	$\sec ^{-1} x$	$\frac{1}{\|x\| \sqrt{x^{2}-1}}$
21	$\operatorname{cosec}^{-1} x$	$\frac{-1}{\|x\| \sqrt{x^{2}-1}}$

fare example:- $0 y=x^{n}$ shan $f^{\prime}(x)=$?
Solution:-Given $f(x)=x^{n}$

$$
f(x+h)=(x+h)^{n}
$$

By first principle of derivative

Derivative of Inverse trigonomend ,function . .,

* Derivative of the above functions are actually obtained by wing the first principle. Methoof of derivative.

$$
\text { ie. } f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{(x+h)-x}
\end{aligned}
$$

Now as $h \rightarrow 0$

$$
\begin{aligned}
& \Rightarrow x+h \rightarrow x \\
= & \lim _{x \rightarrow x} \frac{(x+h)^{n}-x^{n}}{x+h-x} \\
= & n x^{n-1} \quad\left[\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}\right]
\end{aligned}
$$

(2) $y=\sin x$, find $f^{\prime}(x)=$?

Solution:- Given $f(x)=\sin x$.

$$
f(x+h)=\sin (x+h) .
$$

By using first principle of derivative

$$
\begin{aligned}
\Rightarrow f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
& \left.=\lim _{h \rightarrow 0} \frac{2 \cos \left(\frac{x h+x}{2} \cdot \sin \left(\frac{x+h-x}{2}\right)\right.}{h}\right)\left[\begin{array}{c}
\sin c-\sin) \\
\left.2 \cos \frac{c+p}{2} \cdot \sin \frac{6}{2}\right]
\end{array}\right] \\
& =\lim _{h \rightarrow 0} \frac{2 \cos \left(\frac{2 x+h}{2}\right) \cdot \sin h / 2}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cos \left(\frac{2 x+h}{2}\right) \cdot \sin h / 2}{h / 2} \\
& =\lim _{h \rightarrow 0} \cos \left(\frac{2 x+h}{2}\right) \cdot \lim _{h \rightarrow 0} \frac{\sin h / 2}{h / 2} \\
& =\cos \left(\frac{2 x+0}{2}\right) \cdot 1 \\
& =\cos \left(\frac{2 x}{2}\right) \\
& =\cos x .
\end{aligned}
$$

So if $f(x)=\sin x$

$$
\Rightarrow f^{\prime}(x)=\cos x .
$$

(3) If $f(x)=e^{x}$, then find $f^{\prime}(x)=$?

Solution:- Given $f(x)=e^{x}$

$$
f(x+h)=e^{x+h}
$$

using 1st principe of derivative

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x} \cdot e^{h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h} \\
& =e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h} \\
& =e^{x} \times 1 \\
& =e^{x}
\end{aligned}
$$

for $f(x)=e^{x}$.

$$
f^{\prime}(x)=e^{x}
$$

Theoums of derivative:-
(1) $\left.\frac{d}{d x}\{f(x)+g(x)\}=\frac{d}{d x} f(x)+\frac{d}{d x}\right\}(x)\left[\begin{array}{c}\text { Addition } \\ \quad \text { Fwle }\end{array}\right]$
(2) $\frac{d}{d x}\{f(x)-g(x)\}=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)\left[\begin{array}{l}\text { Substraction } \\ 1 \\ \text { Rute }\end{array}\right]$
(3) $\frac{d}{d x}\{f(x) \cdot g(x)\}=\left[\frac{1}{d x} f(x)\right] g(x)+f(x)\left[\frac{1}{d x} g(x)\right]$

(4) $\frac{d}{d x}\left\{\frac{f(x)}{g(x)}\right\}=\frac{\left[\frac{d}{d x} f(x)\right] g(x)-f(x)\left[\frac{d}{d x} g(x)\right]}{[g(x)]^{2}}$
(Qustiznt Rule)
(5) $\frac{d}{d x}\{k f(x)\}=k\left\{\frac{d}{d x} f(x)\right\}$

Q:- Evaluate the derivatine of the followings:
(i) $y=\sin x-x^{3}+\log x$.

Sol ${ }^{n}:-\frac{d y}{d x}=\frac{d}{d x}\left(\sin x-x^{3}+\log x\right)$

$$
=\frac{d}{d x} \sin x-\frac{d}{d x} x^{3}+\frac{d}{d x} \operatorname{l\operatorname {lg}x}
$$

$$
=\cos x-3 x^{2}+\frac{1}{x}
$$

$$
\begin{aligned}
& \text { (ii) } y=3^{x}+\sin x-e^{x} \\
& \text { So6: }-\frac{d y}{d x}=\frac{d}{d x}\left(3^{x}+\sin x-e^{x}\right) \\
& =\frac{d}{d x} 3^{x}+\frac{d}{d x} \sin x-\frac{d}{d x} e^{x} \\
& =3^{x} \log 3+\cos x-e^{x}
\end{aligned}
$$

(iii) $y=9 x^{2}+\frac{3}{x}+5 \sec x$.

$$
\text { sol } \begin{aligned}
1:-\frac{d y}{d x} & =\frac{d}{d x}\left(9 x^{2}+\frac{3}{x}+5 \sec x\right) \\
& =\frac{d}{d x}\left(9 x^{2}\right)+\frac{d}{d x} \frac{3}{x}+\frac{d}{d x} 5 \sec x \\
& =9\left(\frac{d}{d x} x^{2}\right)+3 \cdot\left(\frac{1}{d x} \frac{1}{x}\right)+5\left(\frac{d}{d x} \sec x\right) \\
& =9(2 x)+3\left(\frac{-1}{x^{2}}\right)+5(\sec x \cdot \tan x) \\
& =18 x-\frac{3}{x^{2}}+5 \sec x \cdot \tan x
\end{aligned}
$$

(iv) $y=x^{2} \cos x$

Sos $\frac{d y}{d x}=\frac{d}{d x}\left[x^{2} \cos x\right)$
$=\left[\frac{d}{d x} x^{2}\right] \cos x+x^{2}\left[\frac{1}{d x} \cos x\right]$
$=2 x \cdot \cos x+x^{2}(-\sin x)$
$=2 x \cdot \cos x-x^{2} \sin x$.
(v) $y=\frac{a^{x}-b^{x}}{x}$

Sol : $-\frac{d y}{d x}=\frac{d}{d x}\left\{\frac{a^{x}-b^{x}}{x}\right\}$

$$
=\frac{\left[\frac{d}{d x}\left(a^{x}-b^{x}\right)\right] x-\left(a^{2}-b^{x}\right)\left[\frac{d}{d x} x\right]}{x^{2}}
$$

$$
=\frac{\left(a^{x} \log a-b^{x} \log b\right) x-\left(a^{x}-b^{2}\right)}{x^{2}}
$$

$$
=\frac{x a^{x} \log a-x b^{x} \log b-a^{x}+b^{x}}{x^{2}}
$$

$$
=\frac{a^{x}(x \log a-1)+b^{x}(1-x \log b)}{x^{2}}
$$

(vi) $y=\frac{\sqrt{x}-1}{\sqrt{x}+1}$

SOL $:-\frac{d y}{d x}=\frac{d}{d x}\left\{\frac{\sqrt{x}-1}{\sqrt{x}+1}\right\}$

$$
\begin{aligned}
& =\frac{\left[\frac{1}{d x}(\sqrt{x}-1)\right](\sqrt{x}+1)-(\sqrt{x}-1)\left[\frac{1}{d x}(\sqrt{x}+1)\right]}{\{\sqrt{x}+1\}^{2}} \\
& =\frac{\frac{1}{2 \sqrt{x}}(\sqrt{x}+1)-(\sqrt{x}-1)\left(\frac{1}{2 \sqrt{x}}\right)}{(\sqrt{x}+1)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{1}{2 \sqrt{x}}\{\sqrt{x}+1-\sqrt{x}+1\}}{(\sqrt{x}+1)^{2}} \\
& =\frac{\frac{1}{2 \sqrt{x}}(2)}{(\sqrt{x}+1)^{2}} \\
& =\frac{1}{\sqrt{x}(\sqrt{x}+1)^{2}}
\end{aligned}
$$

(vii) $y=\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}$
sol ${ }^{n} \quad \frac{d y}{d x}=\frac{d}{d x} \sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}$

$$
=\frac{d}{d x} \sqrt{\frac{2 \sin ^{2} x}{2 \cos ^{2} x}}
$$

$$
=\frac{1}{d x} \sqrt{\tan ^{2} x}
$$

$$
=\frac{d}{d x} \tan x
$$

$$
=\sec ^{2} x
$$

Derivative of composice functioin:-
conpor P. (Not-a staridard functh conpasite function means function of tunctions.
i.e. $y=f[g(h(x))]$.

And to find derivative of composite function We use chain Rule.

OR We can say chrin Rule is used if the function is not a standard function.
for example - (1) $\frac{y}{4}-\left(x^{2}+5\right)^{5}$ then find $\frac{d y}{d x}$.
Solution:- $y=\left(x^{2}+5\right)^{5}$ which is a comporite func (or Not coming under 21 struoband fiarmuilas)
so Let $u=x^{2}+5$
Shen $y=u^{5}\binom{$ Which is in }{ Stundend (an) }
Again $u=x^{2}+5$
jith . both sides wor + ' x '
Diff both sides w.r.t' u^{\prime}

$$
\begin{align*}
& \frac{d y}{d u}=\frac{d}{d u} u^{5} \\
& =5 u^{4} \tag{1}\\
& \Rightarrow \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=5 u^{4} \times 2 x \\
& =5\left(x^{2}+5\right)^{4} \cdot 2 x
\end{align*}
$$

(2) $\quad y=\operatorname{lag}(\sin x)$, find $\frac{d y}{d x}$. Given function is a composite function:

So lut $\sin x=u$
Shin $y=\log u$ ($\begin{aligned} & \text { swich is ing } \\ & \text { spind }\end{aligned}$
Diff. both sidus w.r.t $u \Rightarrow \frac{d u}{d x}=\frac{d}{d x} \sin x$

$$
\begin{align*}
\frac{d y}{d u} & =\frac{1}{d u} \operatorname{leg} u \tag{II}\\
& =\frac{1}{u} \tag{1}
\end{align*}
$$

Then $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\frac{1}{u} \times \cos x$

$$
=\frac{1}{\sin x} \cdot \cos x=\cot x .
$$

(3) $y=\sin \left(\tan \left(x^{4}\right)\right.$, find $\frac{d y}{d x}$.

Solution:-

$$
\begin{align*}
& y=\sin \left(\tan x^{4}\right)\left[\begin{array}{c}
\text { a conparibe } \\
\text { functur] }
\end{array}\right] \text { Again } u=\tan x^{4} \\
& \text { functur] } \left\lvert\, \begin{array}{l}
\text { Aghin } u=\tan x^{4} \\
\text { (is comparitefune) }
\end{array}\right. \\
& \text { Lut } u=\tan x^{4} \\
& y-\sin u\left[\begin{array}{l}
\text { which is in } \\
\text { standand fuex. }
\end{array}\right] \\
& \frac{d y}{d u}=\frac{1}{d u} \sin u \\
& \frac{d y}{d u}=\cos u-C \\
& \text { Agmin } V=x^{4} \\
& \text { is alruady in } \\
& \text { standand tarm. } \\
& \text { so } \frac{d v}{d x}=\frac{d}{d x} x^{4} \\
& \Rightarrow \frac{d v}{d x}=4 x^{3} \tag{iii}
\end{align*}
$$

Do finally.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d v} \times \frac{d v}{d x} \\
& =\cos u \times \sec ^{2} v \times 4 x^{3} \\
& =\cos \left(\tan x^{4}\right) \cdot \sec ^{2} x^{4} \cdot 4 x^{3}(t u s)
\end{aligned}
$$

As $\frac{d y}{d x}$ is obtained as $\frac{d y}{d u} \times \frac{d u}{d v} \times \frac{d v}{d x}$ which forms a chain.
that's why the Method is known as chain Rule.
Shortest Method the find derivative of campsite fob Shortut-1 $1 \frac{d y}{d x}=\binom{$ Derivative of. }{ out silitudicu }$\times\left(\begin{array}{l}\text { Derivative of } \\ \text { - 3usids ? }\end{array}\right.$ Q'-1 It $y=\left(x^{2}+5 x\right)^{6}$ find $\frac{d y}{d x}=$?
Solution:- Given $y-\left(x^{2}+5 x\right)^{6}$ (a composite function).

$$
\begin{aligned}
\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(x^{2}+5 x\right)^{6} & =6\left(x^{2}+5 x\right)^{5} \times \frac{d}{d x}\left(x^{2}+5 x\right) \\
& =6\left(x^{2}+5 x\right)^{5} \times(2 x+5)
\end{aligned}
$$

Hews the ster function is power' 6 ' and inner function is $\left(x^{2}+5 x\right)$.
Q.2 $\quad \frac{y}{4}=\sin (\tan \sqrt{x})$, find $\frac{d y}{d x}=$?

SoLution:- Given $y=\sin (\tan \sqrt{x}) \Rightarrow \frac{d y}{d x}=\frac{d}{d x} \sin (\tan \sqrt{x})$

$$
\begin{aligned}
\Rightarrow \frac{d y}{d x} & =\cos (\tan \sqrt{x}) \times \frac{d}{d x} \tan \sqrt{x} \\
& =\cos (\tan \sqrt{x}) \times \sec ^{7} \sqrt{x} \times \frac{d}{d x} \sqrt{x} \\
& =\cos (\tan \sqrt{x}) \cdot \sec ^{2} \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}
\end{aligned}
$$

2.5 $y-e^{\sin ^{2} x}$

Solution :- $\frac{d y}{d x}=\frac{1}{d x} e^{\sin ^{2} x}$

$$
\begin{aligned}
& =e^{\sin ^{2} x} \times \frac{d}{d x} \sin ^{2} x \\
& =e^{\sin ^{2} x} \times 2 \sin x \times \frac{d}{d x} \sin x \\
& =e^{\sin ^{2} x} \times 2 \sin x \times \cos x
\end{aligned}
$$

QA $\quad y=\left[\tan \left(3 x^{2}+5\right)\right]^{5}$
Solution :- $\frac{d y}{d x}-\frac{d}{d x}\left[\tan \left(3 x^{2}+5\right)\right]^{5}$

$$
\begin{aligned}
& =5\left[\tan \left(3 x^{2}+5\right)\right]^{4} \times \frac{1}{d x} \tan \left(3 x^{2}+5\right) \\
& =5\left[\tan \left(3 x^{2}+3\right)\right]^{4} \times \sec ^{2}\left(3 x^{2}+5\right) \times \frac{1}{d x}\left(3 x^{2}+5\right) \\
& =5\left[\tan \left(3 x^{2}+5\right)\right]^{4} \times \sec ^{2}\left(3 x^{2}+5\right) \cdot(6 x) .
\end{aligned}
$$

Shnothut-2:-
Q:- $y=\sqrt{\tan x}$ find $\frac{d y}{d x}=$?.
Solution:- $\quad y=\sqrt{\tan x}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \sqrt{\tan x} \times \frac{d}{d x} \tan x \\
& =\frac{1}{2 \sqrt{\tan x}} \cdot \sec ^{2} x
\end{aligned}
$$

4:-2 y - $\cos ^{2} \sqrt{x}$ find $\frac{d y}{d x}=$?
Solution: $\because y=\cos ^{2} \sqrt{x}$

$$
=(\cos \sqrt{x})^{2}
$$

Shin $\frac{d y}{d x}=\frac{d}{d x}(\cos \sqrt{x})^{2} \times \frac{d}{d x} \cos \sqrt{x} \times \frac{d}{d x} \sqrt{x}$

$$
=2 \cos \sqrt{x} \times(-\sin \sqrt{x}) \times \frac{1}{2 \sqrt{x}}
$$

\&.3 $y=\sqrt{\sin \sqrt{x}}$
Solution:- Given $y=\sqrt{\sin \sqrt{x}}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \sqrt{\sin \sqrt{x}} \times \frac{d}{d x} \sin \sqrt{x} \times \frac{d}{d x} \sqrt{x} \\
& =\frac{1}{2 \sqrt{\sin \sqrt{x}}} \times \cos \sqrt{x} \times \frac{1}{2 \sqrt{x}} \text { (ts). }
\end{aligned}
$$

Some Init Questions:-
\Rightarrow find Derivation of the Followings:
1.1

$$
\text { Solution: } \begin{aligned}
-\frac{d y}{d x} & =\frac{d}{d x} \log (\log (\log x)) \\
& =\frac{1}{\log (\log x)} \times \frac{d}{d x} \log (\log x) \\
& =\frac{1}{\log (\log x)} \times \frac{1}{\log x} \times \frac{d}{d x} \log x . \\
& =\frac{1}{\log (\log x)} \times \frac{1}{\log x} \times \frac{1}{x}
\end{aligned}
$$

Q.2 $y=\sqrt{e^{\sqrt{x}}}$

Solution: - $\frac{d y}{d x}=\frac{d}{d x} \sqrt{e^{\sqrt{x}}}$

$$
\begin{aligned}
& =\frac{1}{2 \sqrt{e^{\sqrt{x}}}} \times \frac{d}{d x} e^{\sqrt{x}} \\
& =\frac{1}{2 \sqrt{e^{\sqrt{x}}}} \times e^{\sqrt{x}} \times \frac{d}{d x} \sqrt{x} \\
& =\frac{1}{2 \sqrt{e^{\sqrt{x}}}} \times e^{\sqrt{x}} \times \frac{1}{2 \sqrt{x}}
\end{aligned}
$$

9.3

$$
y=\cos (\log x)^{2}
$$

Solution:- $\frac{d y}{d x}=\frac{d}{d x} \cos (\log x)^{2}$

$$
\begin{aligned}
& =-\sin (\log x)^{2} \times \frac{d}{d x}(\log x)^{2} \\
& =-\sin (\log x)^{2} \times 2 \log x \times \frac{d}{d x} \log x . \\
& =-\sin (\log x)^{2} \times 2 \log x \times \frac{1}{x}
\end{aligned}
$$

$44 y=\operatorname{lay} \cdot\left(x+\sqrt{x^{2}+a}\right)$
! Solution: $\frac{d y}{d x}=\frac{d}{d x} \log \left(x+\sqrt{x^{2}+a}\right)$

$$
\begin{aligned}
& =\frac{1}{x+\sqrt{x^{2}+a}} \frac{d}{d x}\left(x+\sqrt{x^{2}+a}\right) \\
& =\frac{1}{x+\sqrt{x^{2}+a}}\left(\frac{d}{d x}+\frac{d}{d x} \sqrt{x^{2}+a}\right) \\
& =\frac{1}{x+\sqrt{x^{2}+a}}\left[1+\frac{1}{2 \sqrt{x^{2}+a}} \times \frac{d}{d x}\left(x^{2}+1\right)\right] \\
& =\frac{1}{x+\sqrt{x^{2}+a}}\left[1+\frac{2 x}{2 \sqrt{x^{2}+a}}\right] \\
& =\frac{1}{x+\sqrt{x^{2}+a}}\left[\frac{\sqrt{x^{2}+a}+x}{\sqrt{x^{2}+a}}\right] \\
& =\frac{1}{\sqrt{x^{2}+a}}
\end{aligned}
$$

Derivadive if Inverse Trigonamutric functions by Triganomitrical Transfarmalion:-

Imp Trigonemitric formula:
(1) $\sin ^{2} \theta+\cos ^{2} \theta=1$
(11) $1-\cos 2 \theta=2 \sin ^{2} \theta$
(2) $\tan ^{2} \theta+1-\sec ^{2} \theta$
(12) $1+\cos 2 \theta=2 \cos ^{2} \theta$
(3) $1+\cot ^{2} \theta=\operatorname{cosc}^{2} \theta$
(13) $1-\sin 2 \theta=(\cos \theta-\sin \theta)^{2}$
(3) $\sin 2 \theta=\frac{2 \sin \theta}{1+\tan ^{2} \theta}$
$(14) 1+\sin 2 \theta=(\cos \theta+\sin \theta)^{2}$
(5) or $2 \sin \theta \cdot \cos \theta$

$$
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta
$$

ar $2 \cos ^{2} \theta-1$
or $1-2 \sin ^{2} \theta$
or $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$
(6) $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$
(7) $\cos 3 \theta-4 \cos ^{3} \theta-3 \cos \theta$
(8) $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
(9) $\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$
(10) $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \cdot \tan B}$

CASE-1:-
Evaluate the derivative of the following functions.
$91 \quad y=\tan ^{-1} 2 x$
Solution :- $\frac{d y}{d x}-\frac{d}{d x} \tan ^{-1} 2 x$

$$
\begin{aligned}
& =\frac{1}{1+(2 x)^{2}} \times \frac{d}{d x} 2 x \\
& =\frac{1}{1+4 x^{2}} \times 2
\end{aligned}
$$

Q.2. $y=\cos ^{-1}(\cot x)$

Solution: $-\frac{d y}{d x}=\frac{d}{d x} \cos ^{-1}(\cot x)$

$$
\begin{aligned}
& =\frac{-1}{\sqrt{1-(\cot x)^{2}}} \times \frac{d}{d x} \cot x \\
& =\frac{-1}{\sqrt{1-\cot ^{2} x}} \cdot\left(-\operatorname{cosec}^{2} x\right) \\
& =\frac{\operatorname{cosec}^{2} x}{\sqrt{1-\cot ^{2} x}}
\end{aligned}
$$

QB $y=\sqrt{\sin ^{-1} \sqrt{x}}$
Colutica : $-\frac{d y}{d x}=\frac{d}{d x} \sqrt{\sin ^{-1} \sqrt{x}}$

$$
\begin{aligned}
& =\frac{1}{2 \sqrt{\sin ^{-1} \sqrt{x}}} \times \frac{d}{d x} \sin ^{-1} \sqrt{x} \\
& =\frac{1}{2 \sqrt{\sin ^{-1} \sqrt{x}}} \times \frac{1}{\sqrt{1-(\sqrt{x})^{2}}} \times \frac{d}{d x} \sqrt{x}
\end{aligned}
$$

$$
=\frac{1}{2 \sqrt{\sin ^{-1} \sqrt{x}}} \times \frac{1}{\sqrt{1-x}} \times \frac{1}{2 \sqrt{x}}
$$

Care-2 :-
Evaluate the derivation of the following function
Q. $\quad y=\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)$

Solution:- $\frac{d y}{d x}-\frac{d}{d x} r^{2} x^{2} \sqrt{1-\log ^{\circ}}$

$$
\text { Given } \begin{aligned}
y & =\tan ^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}} \\
& =\tan ^{-1} \sqrt{\frac{2 \sin ^{2} y / 2}{2 \cos ^{2} / 2 / 2}} \\
& =\tan ^{-1} \sqrt{\tan ^{2} x / 2} \\
& =\tan ^{-1}(\tan x / 2) \\
& =x / 2
\end{aligned}
$$

Then $\frac{d y}{d x}=\frac{d}{d x} \frac{x}{2}=\frac{1}{2}$
QR $y=\operatorname{Han}^{-1} \sqrt{\frac{1+\cos x}{1-\cos x}}$
Solution:- Given $y-\tan ^{-1} \sqrt{\frac{1+\cos x}{1-\cos x}}$

$$
\begin{aligned}
& =\tan ^{-1} \sqrt{\frac{2 \cos ^{2} x / 2}{2 \sin ^{2} x / 2}} \\
& =\tan ^{-1} \sqrt{\cot ^{2} x / 2} \\
& =\tan ^{-1}(\cot x / 2) \\
& =\tan ^{-1}(\tan (\pi / 2-x / 2)) \\
& =\pi / 2-x / 2
\end{aligned}
$$

$$
\begin{aligned}
\sin \frac{d y}{d x} & =\frac{d}{d x}(\pi / 2-x / 2) \\
& =0-1 / 2 \\
& =-1 / 2
\end{aligned}
$$

$$
\underline{2,3} y=\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)
$$

Solution:- Given $y=\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)$
Dividing $\cos x$ both in N^{x} and D^{2}

$$
\begin{aligned}
\Rightarrow y & =\tan ^{-1}\left(\frac{1-\tan x}{1+\tan x}\right) \\
& =\tan ^{-1}\left(\frac{\tan \pi / 4-\tan x}{1+\tan \frac{\pi}{4} \cdot \tan x}\right) \\
& =\tan ^{-1}\left(\tan \left(\frac{1}{4}-x\right)\right) \\
& =\frac{\pi}{4}-x
\end{aligned}
$$

$$
\text { Then } \frac{d y}{d x}=\frac{d}{d x}\left(\frac{x}{y}-x\right)
$$

$$
\begin{aligned}
& =0-1 \\
& =-1
\end{aligned}
$$

$\underline{9-4} \quad y=\tan ^{-1} \sqrt{\frac{1+\sin x}{1-\sin x}}$

Given $y=\tan ^{-1} \sqrt{\frac{1+\sin x}{1-\cos x}}$

$$
\begin{aligned}
& =\tan ^{-1} \sqrt{\frac{(\cos x / 2+\sin x / 2)^{2}}{(\cos x / 2-\sin x / 2)^{2}}} \\
& =\tan ^{-1}\left(\frac{\cos x / 2+\sin x / 2}{\cos x / 2-\sin x / 2}\right)
\end{aligned}
$$

Dividing css $x / 2$ both in N^{*} and D^{*}

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{1+\tan ^{2} / 2}{1-\tan ^{2} / 2}\right) \\
& =\tan ^{-1}\left(\frac{\tan \frac{1}{4}+\tan x / 2}{1-\tan \frac{1}{4} \cdot \tan x / 2}\right) \\
& =\tan ^{-1}\left(\tan \left(\frac{1}{4}+\pi / 2\right)\right) \\
& =\frac{\pi}{4}+\pi / 2
\end{aligned}
$$

Shun $\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{4}+x / 2\right)$

$$
=0+\frac{1}{2}
$$

$$
=\frac{1}{2}
$$

Q.5 $\quad y=\tan ^{-1}(\operatorname{cosec} x+\cot x)$ riven $y=\tan ^{-1}(\operatorname{cosec} x+\cot x)$.

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{1}{\sin x}+\frac{\cos x}{\sin x}\right) \\
& =\tan ^{-1}\left(\frac{1+\cos x}{\sin x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{2 \cos ^{2} x / 2}{2 \sin ^{2} x / 2 \cdot \cos 2 / 2}\right) \\
& =\tan ^{-1}\left(\frac{\operatorname{tas} x / 2}{\sin x / 2}\right) \\
& =\tan ^{-1}(\cot x / 2) \\
& =\tan ^{-1}\left(\tan \left(\frac{x}{2}-x / 2\right)\right) \\
& =\pi / 2-x / 2 \\
\frac{d y}{d x} & =\frac{d}{d x}(\pi / 2-x / 2) \\
& =0-1 / 2 \\
& =-1 / 2
\end{aligned}
$$

Case-3:-
Evaluate the derivative of the followings:
$\underline{y+1} \quad y=\sin ^{-1}\left(3 x-4 x^{3}\right)$
Solution Given $y=\sin ^{-1}\left(3 x-4 x^{3}\right)$
put $x=\sin \theta$

$$
\begin{aligned}
\Rightarrow y & =\sin ^{-1}\left(3 \sin \theta-4 \sin ^{3} \theta\right) \\
& =\sin ^{-1}(\sin 3 \theta) \\
& =3 \theta
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow y & =3 \sin ^{-1} x \quad\left(\begin{array}{c}
a s \\
x=\sin \theta \\
y \theta=\sin ^{-1} x
\end{array}\right) \\
\frac{d y}{d x} & =\frac{d}{d x} 3 \sin ^{-1} x \\
& =3\left(\frac{1}{\sqrt{1-x^{2}}}\right) \\
& =\frac{3}{\sqrt{1-x^{2}}}
\end{aligned}
$$

$$
\text { St } y=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{\circ}
$$

Solution:- Given $y^{\prime}=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
put $x=\tan \theta$

$$
\left.\begin{array}{rl}
\Rightarrow y & =\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right) \\
& =\cos ^{-1}(\cos 2 \theta) \\
& =2 \theta \\
& =2 \tan ^{-1} x \quad\binom{\text { as } x=\tan \theta}{\Rightarrow \theta} \tan ^{-1} x
\end{array}\right)
$$

$$
\frac{d y}{d x}=\frac{d}{d x}=\operatorname{tax}^{-1} x
$$

$$
=2\left(\frac{1}{1+x^{2}}\right)
$$

$$
=\frac{2}{1+x^{2}}
$$

$Q=\quad y=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$
Solution: Given $y=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$
put $x=\tan \theta$

$$
\left.\begin{array}{rl}
\Rightarrow 4 & =\tan ^{-1}\left(\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right) \\
& =\tan ^{-1}\left(\frac{\sqrt{\sec ^{2} \theta}-1}{\tan \theta}\right) \\
& =\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right) \\
& =\tan ^{-1}\left(\frac{\frac{1}{\cos \theta}-1}{\frac{\sin \theta}{\cos \theta}}\right) \\
& =\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right) \\
& =\tan ^{-1}\left(\frac{2 \sin \theta / 2}{2 \sin \theta / 2} \cos \theta / 2\right.
\end{array}\right) .
$$

Derivative of Parametric functions:-
Parametric function:-
In parametric function both x and y are given as functions of another e variable, called a parameter.
\rightarrow Method to find $\frac{d y}{d z}$ when x and y are functions of 't
let $x=f(t)$ and $y=g(t)$

$$
\text { then } \frac{d y}{d x}=\frac{d y / d t}{d x / d t}
$$

\rightarrow Method to find $\frac{d y}{d x}$ when x and y are functions foe
let $x=f(\theta)$ and $y=g(\theta)$

$$
\text { then } \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}
$$

Q:-1 find $\frac{d y}{d x}$ fore the following functions:
(i) If $x=a t^{2}$ and $y=2 b t$.

Solution: Given $x=a t^{2}$

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{d}{d t} a t^{2} \\
& =a \frac{d}{d t} t^{2} \\
& =a(2 t) \\
& =2 a t
\end{aligned}
$$

$$
\begin{aligned}
y & =2 b t \\
\frac{d y}{d t} & =\frac{d}{d t} 2 b t \\
& =2 b\left(\frac{d}{d t} t\right) \\
& =2 b
\end{aligned}
$$

Then $\frac{d y}{d x}=\frac{d y / d t}{d y / d t}=\frac{x b}{x a t}=\frac{b}{a t}$
(ii) $x=a(\theta+\sin \theta), \quad y=a(1-\cos \theta)$

Solution:-

$$
\text { Given } \begin{aligned}
x & =a(\theta+\sin \theta) \\
\frac{d x}{d \theta} & =\frac{d}{d \theta} a(\theta+\sin \theta) \\
& =a\left[\frac{d}{d \theta} \theta+\frac{d}{d \theta} \sin \theta\right] \\
& =a[1+\cos \theta]
\end{aligned}
$$

$$
\text { Then } \begin{aligned}
\frac{d y}{d x} & =\frac{d y / d \theta}{d x / d \theta} \\
& =\frac{a \sin \theta}{a(1+\cos \theta)} \\
& =\frac{\sin \theta}{1+\cos \theta}
\end{aligned}
$$

Derivative of a function wis re. E another furstion
Suppose we have to differentiate $f(x)$ w. ex: $g(x)$
In this case let $y=f(x)$
and $z=g(x)$
Te above becomes a parametric function with parameter ' x '.

Then $\frac{d y}{d z}=\frac{d y / d x}{d z / d x}$

Q:-1 Differentiate $\sin ^{-1} x$ w.r.t $\cos ^{-1} x$
Solution : - Let $y=\sin ^{-1} x$ and $z=\cos ^{-1} x$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \sin ^{-1} x \\
& =\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Q:-2 Differentiate \sqrt{x} w.r.t x^{2}
Let $y=\sqrt{x} \quad$ and $z=x^{2}$

$$
\text { and } z=x^{2}
$$

$$
\begin{array}{rl|r}
\frac{d y}{d x} & =\frac{d}{d x} \sqrt{x} & \left.\begin{aligned}
\frac{d z}{d x} & =\frac{d}{d x} x^{2} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned} \right\rvert\,
\end{array}
$$

Then $\frac{d y}{d z}=\frac{d y / d x}{d z / d x}=\frac{1 / 2 \sqrt{x}}{2 x}=\frac{1}{4 x \sqrt{x}}$
Q. 3 Differentiate $\operatorname{sen}^{2} x$ wire. $(\ln x)^{2}$

Solution:- he $y=\sin ^{2} x$ and $z=(\ln x)^{2}$

$$
\left.\Rightarrow \frac{d y}{d x}=\frac{d}{d x} \sin ^{2} x \quad \begin{aligned}
\Rightarrow & =2 \sin x \cdot \frac{d}{d x} \sin x \\
& =2 \sin x \cdot \cos x \\
& =\sin 2 x
\end{aligned} \right\rvert\, \begin{aligned}
& d x \\
&=2 \ln x \frac{d}{d x} \ln x \\
&-2 \ln x \cdot\left(\frac{1}{x}\right)
\end{aligned}
$$

Then $\frac{d y}{d z}=\frac{d y / d x}{d z / d x}=\frac{\sin a x}{2 \ln x(y x)}$

Logarithmic Differentiation:-
Io find derivative of a function power an other function (ie. $f(x)^{g(x)}$), Legarittumic differentiation is helpful.

Methods to follow:
Step 1 Given $y=f(x)^{g(x)}$
Step 2 Take Logarithmic of the function on both sides. ie. Log $y=\log _{4} f(x)^{f(x)}$
Steps Use the formula $\log x^{n}=n \operatorname{tog} x$

$$
\text { ie. } \log y=g(x) \cdot \log f(x)
$$

Steps Differentiate both sides.

$$
\text { ie. } \frac{d}{d x} \log y=\frac{d}{d z}\{g(x) \cdot \log f(x)\}
$$

a:- find $\frac{d y}{d x}$. of the followings:
(i) $y=x^{x}$

Solution:- Given $y=x^{x}$
Take Logarithen, on both sides.

$$
\begin{aligned}
\Rightarrow \log y & =\log x^{x} \\
& =x \times \log x
\end{aligned}
$$

Differuctiale both sides w. Ret x

$$
\begin{aligned}
\Rightarrow \frac{d}{d x} \log y & =\frac{d}{d x}\{x \times \log x\} \\
\Rightarrow \frac{1}{y} \frac{d y}{d x} & =\left(\frac{d}{d x} x\right) \log x+x\left(\frac{d}{d x} \log x\right) \\
& =(1) \log x+x\left(\frac{1}{x}\right) \\
& =\log x+1 \\
\Rightarrow \frac{d y}{d x} & =y[\log x+1] \\
& =x^{x}[\log x+1]
\end{aligned}
$$

(ii) $(\sin x)^{\log x}$

Solution:- Let $y=(\sin x)^{\log x}$
Take \log on both sides.

$$
\begin{aligned}
\Rightarrow \log y & =\log (\sin x)^{\log x} \\
& =\log x \times \log (\sin x)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{d}{d x} \log y=\frac{d}{d x}[\log x \times \log \sin x] \\
& \Rightarrow \frac{1}{y} \frac{d y}{d x}=\left(\frac{d}{d x} \log x\right) \log \sin x+\log x\left(\frac{d}{d x} \log \sin x\right) \\
& =\left(\frac{1}{x}\right) \log \sin x+\log x\left(\frac{1}{\sin x} \cdot \cos x\right) \\
& =\frac{\log \sin x}{x}+\log x \cdot \cot x \\
& \Rightarrow \frac{d y}{d x}=y\left\{\frac{\log \sin x}{x}+\log x \cdot \cot x\right\} \\
& =\sin x \log x\left\{\frac{\log \sin x}{x}+\log x \cdot \cot x\right\}
\end{aligned}
$$

(i) Differentiate $x^{\sin ^{-1} x}+\left(\sin ^{-1} x\right)^{2}$

Solution:- Given $y=x^{\sin ^{-1} x}+\left(\sin ^{-1} x\right)^{x}$
Let $u=x^{\sin ^{-1} x}$

$$
y=\left(\sin ^{-1} x\right)^{x}
$$

Then $y=u+v$
Diff both sides writ x

$$
\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}
$$

Aomidex $e=x^{\sin ^{-1} x}$
Taking Log sw both sides.

$$
\begin{aligned}
\Rightarrow \frac{d v}{d x} & =v\left[\log \sin ^{-1} x+\frac{x}{\sin ^{-1} x} \frac{1}{\sqrt{1-x^{2}}}\right] \\
& =\left(\sin ^{-1} x\right)^{x}\left[\log \sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}} \sin ^{-1} x}\right]
\end{aligned}
$$

Dit bothsides writ x

$$
\begin{align*}
& \Rightarrow \frac{d}{d x} \log u=\frac{d}{d x}\left\{\sin ^{-1} x \cdot \log x\right\} \\
& \Rightarrow \frac{1}{u} \frac{d u}{d x}=\left(\frac{d}{d x} \sin ^{-1} x\right) \log x+\sin ^{-1} x\left(\frac{d}{d x} \log x\right) \\
& \Rightarrow \frac{1}{u} \frac{d u}{d x}=\frac{1}{\sqrt{1-x^{2}}} \log x+\sin ^{-1} x\left(\frac{1}{x}\right) \\
& \Rightarrow \frac{d u}{d x}=u\left[\frac{\log x}{\sqrt{1-x^{2}}}+\frac{\sin ^{-1} x}{x}\right] \\
& \Rightarrow \frac{d u}{d x}=x^{\sin ^{-1} x}\left[\frac{\log x}{\sqrt{1-x^{2}}}+\frac{\sin ^{-1} x}{x}\right] \tag{ii}
\end{align*}
$$

Ruin consider $V=\left(\sin ^{-1} x\right)^{x}$
Taking Log on both sides.

$$
\begin{aligned}
\log v & =\log \left(\sin ^{-1} x\right)^{x} \\
& =x \log \left(\sin ^{-1} x\right)
\end{aligned}
$$

Differentiate both sides writ x

$$
\begin{aligned}
\Rightarrow \frac{d}{d x} \log v & =\frac{d}{d x}\left\{x \log \left(\sin ^{-1} x\right)\right\} \\
\Rightarrow \frac{1}{v} \frac{d v}{d x} & =\left(\frac{d}{d x} x\right) \log \sin ^{-1} x+x\left(\frac{d}{d x} \log \sin ^{-1} x\right) \\
& =\log \sin ^{-1} x+x \frac{1}{\sin ^{-1} x} \frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Derivatius of dippuery min.
Definition \& Amplicity function:-
An eq if the forem $f(x, y)=0$ in which $4 \operatorname{cosen}^{3}$ t be diredty expresset in terme of x khown as implicit function if x and y.

2:-1 find $\frac{d y}{d x}$, when $x^{2}+y^{2}=2 a x y$
Glutien:- Given $x^{2}+y^{2}=2 a \times y$
Ditf - both sides wrot x

$$
\begin{aligned}
& \Rightarrow \frac{d}{d x}\left(x^{2}+y^{2}\right)-\frac{d}{d x}(2 a x y) \\
& \Rightarrow \frac{d}{d x} x^{2}+\frac{d}{d x} y^{2}=\frac{d}{d x}(2 a x y) \\
& \Rightarrow 2 x+2 y \frac{d y}{d x}=2 a \frac{d}{d x}(x y) \\
& =2 a\left[\left(\frac{d}{d x} x\right) y+x\left(\frac{y}{d x} y\right)\right] \\
& \Rightarrow 2 x+2 y \frac{d y}{d x}=2 a\left[y+x \frac{d y}{d x}\right] \\
& =2 a y+2 a x \frac{d y}{d x} \\
& \Rightarrow 2 y \frac{d y}{d x}-2 a x \frac{d y}{d x}=2 a y-2 x \\
& \Rightarrow[2 y-2 k x] \frac{d y}{d x}=2 a y-2 x \\
& \Rightarrow \frac{d y}{d x}=\frac{2 a y-2 x}{2 y-2 a x}
\end{aligned}
$$

S.2 tind $\frac{d y}{d x}$, whace $\cos (x+y)=4 \sin x$

Solution:- Ginen $\cos (x+y)=y \sin x$

$$
\begin{aligned}
& \Rightarrow \frac{d}{d x} \cos (x+y)=\frac{d}{d x} \frac{y}{4} \sin x \\
& \Rightarrow-\sin (x+y) \frac{d}{d x}(x+y)-\left(\frac{d}{d x} y\right) \sin x+y\left(\frac{d}{d x} \sin x\right) \\
& \Rightarrow-\sin (x+y)\left\{\frac{d}{d x} x+\frac{d}{d x} y\right\}=\frac{d y}{d x} \sin x+y \cos x \\
& \Rightarrow-\sin (x+y)\left\{1+\frac{d y}{d x}\right\}=\sin x \frac{d y}{d x}+y \cos x \\
& \Rightarrow-\sin (x+y)-\sin (x+y) \frac{d y}{d x}=\sin x \frac{d y}{d x}+y \cos x \\
& \Rightarrow \sin x \frac{d y}{d x}+\sin (x+y) \frac{d y}{d x}=-2 \cos x-\sin (x+y) \\
& \Rightarrow[\sin x+\sin (x+y)] \frac{d y}{d x}=-[y(\cos x+\sin (x+y)] \\
& \Rightarrow \frac{d y}{d x}=-\frac{y \cos x+\sin (x+y)}{\sin x+\sin (x+y)}
\end{aligned}
$$

Q.3 D ittrentiode $x^{y}=y^{x}$

Peluprey:-Given $x^{y}=4^{x}$
Taking Ley on both sides.

$$
\begin{aligned}
& \log x^{4}=\operatorname{tog} x \\
& \Rightarrow y \cdot \log x=x \times \log y
\end{aligned}
$$

Ditf: "both sides w.r.t x

$$
\begin{aligned}
& \Rightarrow \frac{d}{d x}\{y \times \log x\}-\frac{d}{d x}\{x x \log y\} \\
& \Rightarrow\left(\frac{d}{d x} y\right) \log x+y\left(\frac{d}{d x} \log x\right)=\left(\frac{d}{d x}\right) \log y+x\left(\frac{d}{d x} \log y\right) \\
& \Rightarrow \frac{d y}{d x} \log x+y\left(\frac{1}{x}\right)=\log y+x \frac{1}{y} \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x} \log x-\frac{x}{y} \frac{d y}{d x}-\log y-\frac{y}{x} \\
& \left.\Rightarrow \frac{d y}{d x}\left[\log x-\frac{x}{y}\right]=\log y-\frac{y}{x}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{\log y-7 / x}{\log x-y / y}
\end{aligned}
$$

P4: If $\sqrt{1-x^{2}}+\sqrt{1-y^{3}}=a(x-y)$, P.T. $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$
Given $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$

$$
\text { put } \begin{aligned}
x & =\sin \alpha & \text { shen } x & =\sin ^{-1} x \\
y & =\sin \beta & \beta & =\sin ^{-1} y
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \sqrt{1-\sin ^{2} \alpha}+\sqrt{1-\sin ^{2} \beta}=a(\sin \alpha-\sin \beta) \\
& \Rightarrow \sqrt{\cos ^{2} \alpha}+\sqrt{\cos ^{2} \beta}=a(\sin \alpha-\sin \beta) \\
& \Rightarrow \frac{\cos \alpha+\cos \beta}{\sin \alpha-\sin \beta}=a \\
& \Rightarrow \frac{2 \cos \left(\frac{\alpha+\beta}{2}\right) \cdot \cos \left(\frac{\alpha-\beta}{2}\right)}{2 \cos \left(\frac{\alpha+\beta}{2}\right) \cdot \sin \left(\frac{\alpha-\beta}{2}\right)}=a \\
& \Rightarrow \cot \left(\frac{\alpha-\beta}{2}\right)=a \\
& \Rightarrow \frac{\alpha-\beta}{2}=\cot ^{-1} a \\
& \Rightarrow \alpha-\beta=2 \cot ^{-1} a \\
& \Rightarrow \sin ^{-1} x-\sin ^{-1} y=2 \cot ^{-1} a
\end{aligned}
$$

D话. Writ ' x '

$$
\begin{aligned}
& \Rightarrow \frac{d}{d x} \sin ^{-1} x-\frac{d}{d x} \sin ^{-1} y=\frac{d}{d x} 2 \cot ^{-1} a \\
& \Rightarrow \frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-y^{2}}} \frac{d y}{d x}=0 \\
& \Rightarrow \frac{1}{\sqrt{1-x^{2}}}=\frac{1}{\sqrt{1-y^{2}}} \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x}-\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}} \text { (meved). }
\end{aligned}
$$

- Successive Diffentiation:-
let $y=f(x)$ be the function, then z^{2} ts derivatione wrotx is dinoled by $\frac{d y}{d x} / y^{\prime} / y_{1} / f^{\prime}(x)$

Which is unaen as derevative of first onew,

Now Successine differentiostion mans again and again differentiation upto 'ni no. of times.

* Succuscive dity upto 2 no. Af time.

$$
\text { let } y=f(x)
$$

 if we aqain ditterentiate w.r.t ' x ' '

$$
\text { i.e. } \frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d t^{2}}\binom{\text { knonon at setand }}{\text { order deriventiou }}
$$

Notatione of $2^{\text {nd }}$ order derirative:

$$
y^{\prime \prime} / f^{\prime \prime}(x) / y_{2} / \frac{d^{2} y}{d x^{2}}
$$

Where $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
Q. 1 find y_{1} and y_{2} of the followiogs:
(i) $y=\log x$

Solution $y_{1}=\frac{d}{d x}(\log x)=\frac{1}{x}$

$$
y_{2}=\frac{d}{d x}\left(y_{1}\right)=\frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}}
$$

(i.) $y=\ln (\sin x)$

Solutian $y_{1}=\frac{d}{d x}\{\ln (\sin x)\}=\frac{1}{\sin x} \cdot \cos x=\cot x$

$$
y_{2}=\frac{d}{d x}\left(y_{1}\right)=\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x
$$

Q:-2 find $\frac{d^{2} y}{d x^{2}}$ if the follovings:-
(i) $x=a t^{2}, y=$ tat find $\frac{d^{2} y}{d x^{2}}$.

Solution: - Given $x=a t^{2}, \quad y=$ zat

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{d}{d t} a t^{2} & \frac{d y}{d t} & =\frac{d}{d t} 2 a t \\
& =a \frac{d}{d t} t^{2} & & =2 a \frac{d}{d t} t \\
& =2 a t & & =2 a
\end{aligned}
$$

$$
\text { Then } \frac{d y}{d x}=\frac{d y / d t}{d y / d t}=\frac{2 a}{2 a t}=\frac{1}{t}
$$

$$
\text { then } \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)^{2 t}=\frac{d}{d x}\left(\frac{1}{t}\right)=\left(-\frac{1}{t^{2}}\right) \cdot \frac{d t}{d x}
$$

$$
=-\frac{1}{t^{2}} \times \frac{1}{\frac{d 2}{d t}}
$$

$$
\begin{aligned}
& =-\frac{1}{t^{2}} \cdot \frac{1}{2 a t} \\
& =-\frac{1}{2 a t^{3}} \text { (tns). }
\end{aligned}
$$

(ii) $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$. find $\frac{d^{2} t}{d x^{2}}$.

Solution:- Given $x=a \cos ^{3} \theta$

$$
\begin{aligned}
& \frac{d x}{d \theta}-\frac{d}{d \theta} \pi \cos ^{3} \theta \\
& =3 a \cos ^{2} \theta \cdot(-\sin \theta) \\
& =-3 a \cos ^{2} \theta \cdot \sin \theta
\end{aligned}
$$

aquin $y=a \sin ^{3} \theta$

$$
\begin{aligned}
\frac{d y}{d \theta} & =\frac{d}{d \theta} \operatorname{asin}^{3} \theta \\
& =3 a \sin ^{2} \theta \cdot \cos \theta \\
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta} & =\frac{3 a \sin ^{2} \theta \cdot \operatorname{tas} \theta}{-3 \cos \cos ^{2} \theta \cdot \sin \theta} \\
& =-\frac{\sin \theta}{\cos \theta}=-\tan \theta \\
\text { Then } \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right) & =\frac{d}{d x}(-\tan \theta) \\
& =-\sec ^{2} \theta \quad \frac{d \theta}{d x} \\
& =-\sec ^{2} \theta \cdot \frac{1}{d x} \\
& =\frac{-4 c^{2} \theta}{-3 \cos \theta \cdot \sin \theta}=\frac{1}{3 a \cos ^{4} \theta \cdot \sin \theta}
\end{aligned}
$$

Q:-3 (i) If $y=A \cos x+B \sin x$ then

$$
\text { P.T. } \frac{d^{2} y}{d x^{2}}+y=0
$$

Solutian:- Given $y=A \cos x+B \sin x$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}(A \cos x+B \sin x) \\
& =A(-\sin x)+B \sin B \cos x \\
& =-A \sin x+B \cos x
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right) & =\frac{d}{d x}(-A \sin x+B \cos x) \\
& =-A \cos x+B(-\sin x) \\
& =-4 \cos x-B \sin x \\
& =-(A \cos x+B \sin x)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{d^{2} y}{d x^{2}}=-4 \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}+y=0 \quad \text { preved) }
\end{aligned}
$$

(ii) If $y=\frac{\pi}{2} \operatorname{aic}^{-1} x$, P-T. $\left(1+x^{2}\right) y_{2}+2 x y_{1}=0$

Given $4=\tan ^{-1} x$
Ahen $\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
$\Rightarrow\left(1+x^{2}\right) \frac{d y}{d x}=1$

Again diff. both sides w.r.t x.

$$
\begin{aligned}
& \frac{d}{d x}\left\{\frac{d y}{d x} \cdot\left(1+x^{2}\right)\right\}=\frac{d}{d x}(1) \\
\Rightarrow & \left\{\frac{d}{d x}\left[\frac{d y}{d x}\right)\right\}\left(1+x^{2}\right)+\frac{d y}{d x}\left\{\frac{d}{d x}\left(1+x^{2}\right)\right\}=0 \\
\Rightarrow & \frac{d^{2} y}{d x^{2}}\left(1+x^{2}\right)+\frac{d y}{d x}(2 x)=0 \\
\Rightarrow & \left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}=0 \quad\left(\because y_{2}=\frac{d^{2} y}{d x^{2}}\right) \\
& \text { ore }\left(1+x^{2}\right) y_{2}+2 x y_{1}=0 \text { (preved } \quad\left(y_{1}=\frac{d y}{d x}\right)
\end{aligned}
$$

Q.4 If $y=e^{M \cos ^{-1} x} \quad$ P.T. $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-m^{2} y=0$ Given $y=e^{m \cos ^{-1} x}$

$$
\begin{align*}
\frac{d y}{d x} & =\frac{d}{d x} e^{m \cos ^{-1} x} \\
& =e^{m \cos ^{-1} x} ; \frac{d}{d x} m \cos ^{-1} x \\
& =e^{m \cos ^{-1} x} \cdot\left(\frac{-m}{\sqrt{1-x^{2}}}\right) \\
\Rightarrow \sqrt{1-x^{2}} & \frac{d y}{d x}=-m e^{m \cos ^{-1} x} \\
\Rightarrow \sqrt{1-x^{2}} & \frac{d y}{d x}=-m y \tag{1}
\end{align*}
$$

Squanike both sides..

$$
\begin{aligned}
& \Rightarrow\left(\sqrt{1-x^{2}}\right)^{2}\left(\frac{d y}{d x}\right)^{2}=(-m y)^{2} \\
& \Rightarrow\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=m^{2} y^{2}
\end{aligned}
$$

New diff bothsides w.r.t x.

$$
\begin{aligned}
& \Rightarrow \frac{d}{d x}\left\{\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}\right\}=\frac{d}{d x}\left(m^{2} y^{2}\right) \\
& \Rightarrow\left\{\frac{d}{d x}\left(1-x^{2}\right)\right\}\left(\frac{d y}{d x}\right)^{2}+\left(1-x^{2}\right)\left\{\frac{d}{d x}\left(\frac{d y}{d x}\right)^{2}\right\}=m^{2} \frac{d}{d x} y^{2} \\
& \Rightarrow(-2 x)\left(\frac{d y}{d x}\right)^{2}+\left(1-x^{2}\right)=\frac{d y}{d x} \cdot \frac{d}{d x}\left(\frac{d y}{d x}\right)=m^{2} 2 y \frac{d y}{d x} \\
& \Rightarrow-2 x\left(\frac{d y}{d x}\right)^{2}+2\left(1-x^{2}\right) \frac{d y}{d x} \cdot \frac{d^{2} y}{d x^{2}}=x^{2} y\left(2 \frac{d y}{d x}\right) \\
& \Rightarrow 2 \frac{d y}{d x}\left\{-x \frac{d y}{d x}+\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}\right\}=m^{2} y\left(2 \frac{d y}{d x}\right) \\
& \Rightarrow \quad\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-m^{2} y \\
& \Rightarrow\left(1-x^{2}\right) \frac{d y}{d x^{2}}-x \frac{d y}{d x}-m^{2} y=0 \quad \text { (proved) }
\end{aligned}
$$

(ii) If $x=\sin x, y=\sin (P t)$ then shrew that

$$
\left(1-x^{\prime}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+p^{2} y=0
$$

Solution:- Given $y=\sin (P t)$

$$
=\sin \left(p \sin ^{-1} x\right)(\because x-\sin t) .
$$

Then $\frac{d y}{d x}-\cos \left(\operatorname{Pin}^{-1} x\right) \cdot \frac{p}{\sqrt{1-x^{2}}}$

$$
\Rightarrow \sqrt{1-x^{2}} \frac{d y}{d x}=P \cos \left(P \sin ^{-1} x\right)
$$

Squaring both the sides.

$$
\begin{aligned}
& \Rightarrow\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=p^{2} \cos ^{2}\left(p \sin ^{-1} x\right) \\
& \Rightarrow\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=p^{2}\left[1-\sin ^{2}\left(p \sin ^{-1} x\right)\right\} \\
& \Rightarrow\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=p^{2}-p^{2} \sin ^{2}\left(p \sin ^{-1} x\right) \\
& \Rightarrow\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=p^{2}-p^{2} y^{2} \quad\left(\because y=\sin \left(p \sin ^{-1} x\right)\right.
\end{aligned}
$$

Again Diff. We get

$$
\begin{aligned}
& \Rightarrow \frac{d}{d x}\left\{\left(1-x^{2}\right)\left[\frac{d y}{d x}\right)^{2}\right\}=\frac{d}{d x}\left\{p^{2}-p^{2} y^{2}\right\} \\
& \Rightarrow\left\{\frac{d}{d x}\left(1-x^{2}\right)\right\}\left(\frac{d y}{d x}\right)^{2}+\left(1-x^{2}\right)\left\{\frac{d}{d x}\left(\frac{d y}{d x}\right)^{2}\right\}=-p^{2} \cdot 2 y \frac{d y}{d x} \\
& \Rightarrow-2 x\left(\frac{d y}{d x}\right)^{2}+\left(1-x^{2}\right)=\frac{d y}{d x} \frac{d^{2} y}{d x^{2}}=-p^{2}=y \frac{d y}{d x} \\
& \Rightarrow 2 \frac{d y}{d x}\left[-x \frac{d y}{d x}+\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}\right]=2 \frac{d y}{d x}\left(-p^{2} y\right) \\
& \Rightarrow\left[1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=-p^{2} y \\
& \Rightarrow\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+p^{2} y=0 \text { (proved. }
\end{aligned}
$$

- Partial Differentiation:-

Partial Difterantialian muss derivative of a function of several variables (functions iefenticed on twa ar mere variable:]
(i) $y=x^{1} t+x^{3} t^{2}$

or $y=f(x, t)$
(ii) $z=x^{2} y+x y^{2}$
here z is a function of two variables x ally

$$
\text { ie. } z=f(x, y)
$$

where x and y are independent variables. and z is dependent vavieble.
(hi) $u=x y z+x^{3}+y^{3}+z^{3}$
here $\forall \omega$ is a fundion of there variables.

$$
x, y, x
$$

Where x, y, z ane independent V triable. and u is dependent variable.
And Partial differentiation is used to evaluate. the derivalize of these type of finctross.

Methodology:-
Given $z=f(x, y)$
Sher its partial derivative w.r.t ' x ' is denoted ad $\frac{\partial z}{\partial x}$ or f_{x} (treating y as constant).
and partial derivaline w.r.t ' y ' is denoted as.

$$
\frac{\partial z}{\partial y} \text { ar } f_{y} \text { (truanting } x \text { as constant). }
$$

Q. $1 \quad Z=x^{2} y+x y^{2}$ find $\frac{\partial z}{\partial x}$ and $\frac{\partial z_{0}}{\partial y}$.

307

$$
\begin{aligned}
z & =x^{2} y+x y^{2} \\
\frac{\partial z}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2} y+x y^{2}\right) \\
& =\frac{\partial}{\partial x}\left(x^{2} y\right)+\frac{\partial}{\partial x}\left(x y^{2}\right) \\
& =2 x y+y^{2} \\
\frac{\partial z}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2} y+x y^{2}\right) \\
& =\frac{\partial}{\partial y}\left(x^{2} y\right)+\frac{\partial}{\partial y}\left(x y^{2}\right) \\
& =x^{2}+2 x y
\end{aligned}
$$

Hemogenerue function:-
Def" A function $f(x, y)$ is said to be homayturea, in x and y of degree ' n '
if $f\left(t_{x}, *_{y}\right)=t^{n} f(x, y)$
or A function $f(x, y)$ is said to be homogenies. in x and y it degree n if Sum of all powers 4 x and y is equal ta n in each term.
for example:-
Check, whether $f(x, y)=x^{4}+x^{3} y-y^{4}$ is hamagenesut er not?
Wy I^{2} method $f(x, y)=x^{4}+x^{3} y-y^{4}$

$$
\begin{aligned}
f(t x, t y) & =(t x)^{4}+(t x)^{3}(t y)-(t y)^{4} \\
& =t^{4} x^{4}+t^{3} x^{3} \pm y-t^{4} y^{4} \\
& =t^{4} x^{4}+t^{4} x^{3} y-t^{4} y^{4} \\
& =t^{4}\left(x^{4}+x^{5} y-y^{4}\right) \\
& =t^{4} f(x, y)
\end{aligned}
$$

So $f(x, y)$ is a homogereove function if degree 4:
$2^{\text {nd }}$ method

$$
f(x, y)=x^{4}+x^{3} y-y^{4}
$$

Hereetahterm in. $1^{\text {st }}$ term x^{4} (d agree 4) $2^{n 4}$ term $x^{3} y$ (sum it poor $3^{2} d \operatorname{term} y^{4}$ (Prover 4).
So $f(x, y)$ is a homageneans function if degree 4 .
Euler's Theorem:-
If z is a homogeneous function if degree n then

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=n z
$$

Integration
Standard formulas:
(1) $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$
(2) $\int e^{x} d x=e^{x}+c$
(3) $\int a^{x} d x=\frac{a^{x}}{\log a}+c$
(4) $\int \frac{1}{x} d x=\log x+c$
(5) $\int k d x=k x+c$
(6) $\int \sin x d x=-\cos x+c$
(7) $\int \cos x d x=\sin x+c$
(8) $\int \sec ^{2} x d x=\tan x+c$
(9) $\int \operatorname{cosec}^{2} x d x=-\cot x+c$
(10) $\int \sec x \cdot \tan x d x=\sec x+c$
(II) $\int \operatorname{cosec} x \cdot \cot x=-\operatorname{cosec} x+c$
(12) $\int \frac{1}{\sqrt{1-x^{e}}} d x=\tan \sin ^{-1} x+c$
(13) $\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c$
(14) $\int \frac{1}{|x| \sqrt{x^{2}-1}} d x=\sec ^{-1} x+c$ $0 x-\operatorname{cosec}^{-1} x+c$.

Integration formulus derived from: Substitution method
(1)

$$
\begin{aligned}
\int \tan x d x & =\log |\sec x|+c \\
& \text { or }-\log |\cos x|+c
\end{aligned}
$$

(2) $\int \cot x d x=\log |\sin x|+c$
(3) $\int \sec x d x=\log |\sec x+\tan x|+c$
(4) $\int \operatorname{cosec} x d x=\log |\operatorname{cosec} x-\cot x|+c$

Q:-1

$$
\text { (i) } \begin{aligned}
& \int \tan ^{2} x d x \\
= & \int\left(\sec ^{2} x-1\right) d x \\
= & \tan x-x+c
\end{aligned}
$$

$$
\text { (i) } \begin{aligned}
& \int \sqrt{1-\sin 2 x} d x . \\
= & \int \sqrt{(\cos x-\sin x)^{2}} d x . \\
= & \int(\cos x-\sin x) d x . \\
= & \sin x+\cos x+c
\end{aligned}
$$

$$
\text { (iii) } \begin{aligned}
& \int \frac{1}{\sin ^{2} x \cdot \cos ^{2} x} d x . \\
= & \int \frac{\sin ^{2} x+\cos ^{2} x}{\sin ^{2} x \cdot \cos ^{2} x} d x \\
= & \int \frac{\sin ^{2} x}{\sin ^{2} x \cdot \cos ^{2} x} d x+\int \frac{\cos ^{2} x}{\sin ^{2} x \cdot \cos ^{2} x} d x, \\
= & \int \frac{1}{\cos ^{2} x} d x+\int \frac{1}{\sin ^{2} x} d x \\
= & \int \sec ^{2} x d x+\int \operatorname{cosec}^{2} x d x . \\
= & \tan ^{2} x-\cot x+c
\end{aligned}
$$

Integration by conto
Substitution Method
Type I

$$
\begin{aligned}
& \int f(a x+b) d x \\
& \text { Take } a x+b=t \\
& \Rightarrow a d x=d t \\
& \Rightarrow d x=\frac{d t}{\sim}
\end{aligned}
$$

Then $\int f(a x+b) d x=\int f(t) \frac{d t}{x}$
Ex

$$
\begin{array}{lr}
x \cos 3 x d x . & \text { let } 3 x=t \\
=\int \cos t \frac{d t}{3} & \Rightarrow d x=\frac{d t}{d x} \\
=\int \frac{d}{3} \\
=\frac{1}{3} \int \cos t d t & \\
=\frac{1}{3} \sin t+c & \\
=\frac{1}{3} \sin 3 x+c &
\end{array}
$$

Type II

$$
\begin{aligned}
& \text { ye II } \int f(g(x)) \cdot g^{\prime}(x) d x . \\
& {\left[\begin{array}{l}
\text { let } g(x)=t \\
\Rightarrow g^{\prime}(x)=\frac{d t}{d x} \\
\Rightarrow g^{\prime}(x) d x=d t
\end{array}\right.} \\
& \text { Sher } \int f(g(x)) \cdot g^{\prime}(x) d x \\
& =\int f(t) d t
\end{aligned}
$$

Ex:-

$$
\begin{aligned}
& -\int e^{\tan x} \cdot \sec ^{2} x d x . \\
& \quad \text { let } \tan x=t \\
& \quad \sec ^{2} x d x=d t \\
& =\int e^{t} d t \\
& =e^{t}+c \\
& =e^{\tan x}+c
\end{aligned}
$$

Type III $\int \frac{f^{\prime}(x)}{f(x)} d x$
Let $f(x)=t$

$$
f^{\prime}(x) d x=d t \text {. }
$$

Then $\int \frac{f^{\prime}(x)}{f(x)} d x=\int \frac{1}{t} d t$
Ex:- $\int \frac{\cos x}{\sin x} d x$.

$$
\begin{aligned}
& =\int \frac{1}{t} d t \quad \operatorname{let} \sin x=t \\
& =\log |t|+c \\
& =\log |\sin x|+c
\end{aligned}
$$

Type IV $\int x^{n-1} f\left(x^{n}\right) d x$.

$$
\begin{aligned}
& \text { Let } x^{n}=t \\
& \Rightarrow n x^{n-1}=\frac{d t}{d x} \\
& \Rightarrow x^{n-1} d x=\frac{d t}{n}
\end{aligned}
$$

$$
\begin{aligned}
& E x:-\int x^{6} \operatorname{cosec}^{2}\left(x^{7}\right) d x \\
& \text { ut } x^{7}=t \\
& \Rightarrow 7 x^{6}=\frac{d t}{d x} \\
& \Rightarrow x^{6} d x=\frac{d t}{7} \\
&= \int \operatorname{cosec} t \frac{d t}{7} \\
&= \frac{1}{7} \int \operatorname{cosec} t d t \\
&= \frac{1}{7}(-\cot t)+c \\
&=-\frac{1}{7} \cot x^{7}+c \\
& \text { Type } V \\
& \therefore[f(x)]^{7} f^{\prime}(x) d x . \\
& \text { let } f(x)=t \\
& f^{\prime}(x) d x=d t
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex:- } \int \cos ^{3} x \cdot \sin x d x \\
& \quad \text { et } \cos x=t \\
&-\sin x d x=d t \\
& \sin x d x=-d t \\
&= \int t^{3}(-d t) \\
&=-\int t^{3} d t \\
&=-\frac{t^{4}}{4}+c \\
&=-\frac{\cos ^{4} x}{4}+c
\end{aligned}
$$

SPECIAL CAS气
Q:-1

$$
\text { (i) } \begin{aligned}
& \int \sin ^{4} x \cdot \cos ^{3} x d x \\
= & \int \sin ^{4} x \cdot \cos ^{2} x \cdot \cos x d x \\
= & \int \sin ^{4} x \cdot\left(1-\sin ^{2} x\right) \cos x d x
\end{aligned}
$$

Let $\sin x=t$ $\cos x d x=d t$

$$
\begin{aligned}
& =\int t^{4}\left(1-t^{2}\right) d t \\
& =\int t^{4}-t^{6} d t \\
& =\frac{t^{5}}{5}-\frac{t^{7}}{7}+c \\
& =\frac{\sin ^{5} x}{5}-\frac{\sin ^{7} x}{7}+c
\end{aligned}
$$

(i)

$$
\begin{aligned}
& \text { 140t } \int \cot ^{3} x \cdot \operatorname{cosec}^{16} x d x \\
& =\int \cot ^{2} x \cdot \cos ^{15} x \cdot \int \cot ^{2} x \cdot \operatorname{cosc}^{15} x \cdot \cot x \operatorname{coscc} x \\
& =\int\left(\operatorname{cosc}^{2} x-1\right) \operatorname{cosec}^{15} x \cdot \cot x \cdot \operatorname{cosec} x d x \\
& \text { et } \operatorname{cosec} x=t \\
& \Rightarrow-\cot x \cdot \operatorname{cosc} x d x=d t \\
& \Rightarrow \cot x \cdot \operatorname{cosec} x d x=-d t \\
& \Rightarrow \\
& =\int\left(t^{2}-1\right) t^{15}(-d t) \\
& =-\int t^{17}-t^{15} d t \\
& =-\left(\frac{t^{18}}{18}-\frac{t^{16}}{16}\right)+c=\frac{\operatorname{cose}}{16} x-\frac{\operatorname{cosec}}{18} x+c
\end{aligned}
$$

$$
\text { (iii) } \begin{aligned}
& \int \cos 3 x \cdot \sin 2 x d x \\
= & \frac{1}{2} \int 2 \cos 3 x \cdot \sin 2 x d x \\
= & \frac{1}{2} \int\{\sin (3 x+2 x)-\sin (3 x-2 x)\} d x \\
= & \frac{1}{2} \int \sin 5 x-\sin x d x \\
= & \frac{1}{2}\left(\frac{-\cos 5 x}{5}+\cos x\right)+c
\end{aligned}
$$

Integration by Trigometric Substictutio

$$
\text { (1) } \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}+c
$$

(2) $\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
(3) $\int \frac{1}{|x| \sqrt{x^{2}-a^{2}}} d x=\frac{1}{a} \sec ^{-1} \frac{x}{a}+c$
(4) $\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+c$
(5) $\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\log \left|x+\sqrt{x^{2}-a^{2}}\right|+c$
(b) $\int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+c$
(7) $\int \frac{1}{a^{2}-x^{2}} d x=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+c$
(8) $\int \sqrt{a^{2}-x^{2}} d x=4$
(8) $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c$
(9) $\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c$
(10) $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+c$
Q. 1 (i)

$$
\begin{aligned}
& \int \frac{\cos x d x}{\sin ^{2} x+4} \quad \text { ut } \sin x=t \\
& \cos x d x=d t
\end{aligned} \quad \begin{aligned}
& =\int \frac{d t}{t^{2}+(2)^{2}} \\
& = \\
& \frac{1}{2} \tan ^{-1} \frac{t}{2}+c \\
& = \\
& =\frac{1}{2} \tan ^{-1} \frac{\sin x}{2}+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \int \frac{\cos x d x}{\sin ^{2} x \sqrt{\operatorname{cosec}^{2} x-4}} \\
& =\int \frac{\cos x d x}{\sin x \cdot \sin x \sqrt{\operatorname{cosec}^{2} x-4}} \\
& =\int \frac{\cot x \cdot \operatorname{cosec} x d x}{\sqrt{\operatorname{cosec}^{2} x-4}} \\
& \text { Let } \operatorname{cosec} x=t \\
& \Rightarrow-\operatorname{cosec} x \cdot \cot x=\frac{d t}{d x} \\
& \Rightarrow \operatorname{cosec} x \cdot \cot x d x=-d t \\
& =\int \frac{-d t}{\sqrt{t^{2}-(2)^{2}}} \\
& =-\log \left|t+\sqrt{t^{2}-(2)^{2}}\right|+C \\
& =-\log \left|\operatorname{cosec} x+\sqrt{\operatorname{cosec}^{2} x-4}\right|+c
\end{aligned}
$$

SPECIAL CASE
cos I

$$
\begin{aligned}
& \int \sqrt{a x^{2}+b x+c} d x . \\
& \text { or } \int \frac{\text { const }}{\sqrt{a x^{2}+b x+c}} d x \text { or } \int \frac{\text { const }}{a x^{2}+b x+c} d x .
\end{aligned}
$$

Q. 1 Thex convert $a x^{2}+6 x+c$ into priffect squara

$$
\begin{aligned}
& =\int \frac{d x}{(x)^{2}+2 \cdot x \cdot 3+(3)^{2}-(3)^{2}+13} \\
& =\int \frac{d x}{(x+3)^{2}+4} \quad d x+3=t \\
& =\int \frac{d t}{t^{2}+(2)^{2}} \quad d x=d t \\
& \therefore \quad \frac{1}{2} \tan ^{-1} \frac{t}{2}+c \\
& =\frac{1}{2} \tan ^{-1} \frac{x+3}{2}+c
\end{aligned}
$$

$$
\therefore \therefore \therefore \begin{aligned}
& t^{2}+(2) \\
& =\frac{1}{2} \tan ^{2} \frac{t}{2}+C
\end{aligned}
$$

Case II

$$
\begin{aligned}
& \int \frac{p x+q}{\sqrt{a x^{2}+6 x+c}} d x \\
& \text { or } \int(p x+q) \sqrt{a x^{2}+6 x+c} d x
\end{aligned}
$$

Then let $a x^{2}+b x+c=t$

Integration Byparts
Ing

$$
\begin{aligned}
& \int(x+f+m)(2 d d+x) d x \\
& =\operatorname{l}_{\text {st }} \int 2^{n d} \operatorname{fon} d x-\int\left[\left(\frac{d}{d x} 1 s t\right)\left(\int 2^{n} d f_{\text {min }} d x\right)\right] d x
\end{aligned}
$$

How to choose $1^{\text {st }}$ \& $2^{\text {nd }}$. Finctu.

Q. 1 Evaluate

I LATE

$$
\int \cos x \cdot x d x \text {. }
$$

$$
\frac{\downarrow}{x} \downarrow_{\cos x}
$$

$$
1 s+f_{u m}=x
$$

$$
2^{\prime d} \quad v=\cos x .
$$

Solution

$$
\begin{aligned}
\int \cos x \cdot x d x & =x \int \cos x d x-\int\left[\left(\frac{d}{d x} x\right)\left(\int \cos x d x\right)\right] d x . \\
& =x \sin x-\int 1 \cdot \sin x d x . \\
& =x \sin x-\int \sin x d x . \\
& =x \sin x-(-\cos x)+c \\
& =x \sin x+\cos x+c
\end{aligned}
$$

4 mp
NOTE1- when there is a one function to integrate, and its integration is not knison thin multiply 1 and take 1 as $2^{\text {nd }}$ function.
Q.1 $\int \log x d x$.

$$
\begin{aligned}
& =\int \log x \cdot 1 d x . \quad 1^{s t}=\log x \\
& \left.=\log x \int 1 d x-\int\left[\left(\frac{d}{d x} \log x\right)\left(\int 1\right) x\right)\right] d x \\
& =(\log x) x-\int \frac{1}{x} \cdot x d x \\
& =x \log x-\int d x \\
& =x \log x-x+c .
\end{aligned}
$$

formule
(1) $\int e^{a x} \cos b x d x=\frac{e^{a x}}{a^{2}+b^{2}}[a \cos b x+b \sin b x]+c$
(2) $\int \cdot e^{a x} \sin b x d x=\frac{e^{a x}}{a^{2}+b^{2}}[a \sin b x-b \cos b x]+c$

Note 2:-

$$
\begin{aligned}
& \int e^{x}\left[f(x)+f^{\prime}(x)\right] d x \\
&=e^{x} f(x)+c \\
& \varepsilon x:- \int e^{\prime}\left[\frac{1}{x}-\frac{1}{x^{2}}\right] d x \\
&= \int e^{x}\left[\frac{1}{x}+\left(-\frac{1}{x^{2}}\right)\right] \cdot d x \\
&= e^{x} \frac{1}{x}+c \quad\binom{\because f(x)=\frac{1}{x}}{f^{\prime}(x)=-\frac{1}{x^{2}}} \\
& \quad-0
\end{aligned}
$$

Definite Integration

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=g(x)+\left.c\right|_{a} ^{b} \\
&=\{q(b)+c\}-\{g(a)+c\} \\
&=g(b) x-q(a)+c \\
&=g(b)-g(a) \\
& E x:-\int_{2}^{3} x^{3} \cdot d x \\
&=\left.\frac{x^{4}}{4}\right|_{2} ^{3} \\
&=\frac{(3)^{4}}{4}-\frac{(2)^{4}}{4} \\
&=\frac{65}{4}
\end{aligned}
$$

\triangle PECIAL CASE
(1)

$$
\begin{aligned}
& \int_{a}^{b}[x] d x . \\
& \quad[x]= \begin{cases}0, & 0<x<1 \\
1, & 1<x<2 \\
2, & 2<x<3 \\
=-1, & M<x<n\end{cases}
\end{aligned}
$$

Ex:- $\int_{1}^{4}[x] d x$.

$$
\begin{aligned}
& =\int_{1}^{2}[x] d x+\int_{2}^{3}[x] d x+\int_{3}^{4}[x] d x \\
& =\int_{1}^{2} 1 d x+\int_{2}^{3} 2 d x+\int_{3}^{4} 3 d x . \\
& =\left.x\right|_{1} ^{2}+\left.2 x\right|_{2} ^{3}+\left.3 x\right|_{3} ^{4} \\
& =(2-1)+(6-4)+(12-9) \\
& =1+2+3 \\
& =6
\end{aligned}
$$

(2)

$$
\left.\begin{array}{rl}
& \int_{-a}^{a}|x| d x \\
& |x|=\left\{\begin{array}{l}
-x, x<0 \\
x,
\end{array}\right) x>0
\end{array}\right\} \begin{aligned}
E x:- & \int_{-3}^{3}|x| d x \\
= & \int_{-3}^{0}|x| d x+\int_{0}^{3}|x| d x \\
= & \int_{-3}^{0}-x d x+\int_{0}^{3} x d x \\
= & x d x+\int_{0}^{3} x d x \\
= & \left.\frac{x^{2}}{2}\right|_{0} ^{-3}+\left.\frac{x^{2}}{2}\right|_{0} ^{3} \\
= & \left\{\frac{(-3)^{2}}{2}-\frac{(0)^{2}}{2}\right\}+\left\{\frac{(3)^{2}}{2}-\frac{(0)^{2}}{2}\right\} \\
= & \frac{9}{2}+\frac{1}{2} \\
= & \frac{18}{2}=9(A n y,
\end{aligned}
$$

Preperties
(i1) $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t=\int_{a}^{b} f(y) d y$
(2) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
(3) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{d} f(x) d x+\int_{b}^{b} f(x) d x$
whene $a<c<d<b$
(1) $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$.
(5) $\int_{-a}^{a} f(x) d x=\left\{\begin{array}{cl}2 \int_{0}^{a} f(x) d x, & f(x) \text { iseven } \\ 0, & f(x) \text { is odd. }\end{array}\right.$

NoTE:-(1) $\int_{0}^{\pi / 2} \frac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot +x}} d x=\frac{\pi}{4}$
(2) $\int_{0}^{\pi / 2} \frac{d x}{1+\tan x}=\frac{\pi}{4}$
(3) $\int_{0}^{\pi / 2} \frac{\cos x}{\cos x+\sin x} d x=\frac{\pi}{4}$
(1) $\int_{0}^{\pi / 2} \log \tan x d x=0$
(5) $\int_{0}^{\pi / 4} \log (1+\tan \theta) d \theta=\frac{\pi}{8} \log 2$

Area Under the curve

* Area under the cure w.r.t x-anis.
* Area under the Curve w.r.t Y-anis.
Q. 1 find the area bounded by $y=x$, x-anis, $x=0$ and $x=1$

$$
\begin{aligned}
\text { Area } & =\int_{0}^{1} y d x . \\
& =\int_{0}^{1} x d x \\
& =\left.\frac{x^{2}}{2}\right|_{0} ^{1} \\
& =\frac{1}{2} \text { Squnit. }
\end{aligned}
$$

Q. 2 find the area bounded by

$$
\begin{aligned}
& y=4 x^{2}, x=0, y=1 \text { and } y=4 \\
& \text { Area }=\int_{1}^{4} x d y . \\
&=\int_{1}^{4} \frac{1}{2} \sqrt{y} d y \\
&=\frac{1}{2}\left\{\left.\frac{y^{3 / 2}}{3 / 2}\right|_{1} ^{4}\right\} \\
&=\frac{1}{2} \times \frac{2}{3}\left\{\left.y^{1 / 2}\right|_{1} ^{4}\right\} \\
&=\frac{1}{3}\left[(4)^{9 / 2}-(1)^{3 / 2}\right] \text { sq unit. } \\
&=\frac{1}{3}(8-1) \text { sq unit. } \\
&=7=1 \\
& \text { sq sq unit. }
\end{aligned}
$$

NOTE:- Area bounded by the circle.

$$
x^{2}+y^{2}=a^{2} \text { is } \pi a^{2}
$$

Ex:- Are bounded by the liven $x^{2}+y^{2}=9$ is 9π

Differentia Equations

PRAGYAN PRIYADARSINI LECTURER IN MATHEMATICS GOVT. POLYTECHNIC JAJPUR

Definition

- An equation involving
- independent variable,
- dependent variable and
- derivative of dependent variable with respective to the independent variable or variables
- is known as DIFFERENTIAL EQUATION.

For example:

$$
\frac{d y}{d x}+3 y^{2}=9 x
$$

- In the above equation:
- $x=$ independent variable
${ }^{\circ} \mathrm{y}=$ dependent variable
$\frac{d y}{d x}=$ derivative of dependent variable (i.e. ' y ') with respective to the independent variable or variables (ie. ' x ')

Types of Differential Equations

- Differential Equations are of 2 types:
A. Ordinary differential equations (O.D.E)
B. Partial differential equations (P.D.E)

Ordinary differential equations (O.D.E)

- Differential equations involving derivatives w.r.t only one independent variable is called Ordinary differential equations (O.D.E)
૬xanple:

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}-9 x=0
$$

- Here the derivatives includes only one independent variable i.e. 'x’

Partial differential equations (P.D.E)

- Differential equations involving derivatives w.r.t more than one independent variable is called Partial differential equations (P.D.E)
Exanple:

$$
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=5 u
$$

Here $u=f(x, y, z)$, therefore
${ }^{\circ} \mathbf{u}$

dependent variable
${ }^{\circ} \mathbf{x}, \mathbf{y}, \mathbf{z} \longrightarrow$ independent variables

Order of the Differential equation

- Order of the differential equation is the highest order of the derivatives occurring in it.
- As we already know:
$\frac{d y}{d x} \Longrightarrow 1^{\text {st }}$ order derivative
$\frac{d^{2} y}{d x^{2}} \Rightarrow 2^{\text {nd }}$ order derivative
$\frac{d^{3} y}{d x^{3}} \Longrightarrow 3^{\text {rd }}$ order derivative
$\left.\frac{\mathrm{d}^{\mathrm{n}} \mathrm{y}}{\mathrm{dx}}\right] \Longrightarrow \mathrm{n}^{\text {th }}$ order derivative

Lets see few examples:

ङ.g. 1:

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}-9 x=0
$$

- Order $=2$

$$
\left(\frac{d y}{d x}\right)+x^{2}=\frac{d^{3} y}{d x^{3}}
$$

- Order $=3$

Degree of the Differential equation

- Degree of the Differential equation is the highest power of the highest order derivative after the equation has been freed from radicals and fractions.

Lets see few examples:
E.g.g. 1:

- Order = 3
- Degree = 1

$$
\frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{2}=9 x
$$

$$
\left.\begin{array}{rl}
\text { E.g. 2: } & \frac{d^{2} y}{d x^{2}}=\sqrt{3+\frac{d y}{d x}} \\
& \Rightarrow\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=3+\frac{d y}{d x}
\end{array} \quad \text { [squaring both sides] }\right]
$$

- Order $=2$
- Degree $=2$
log. 3:

$$
\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{5 / 2}=3\left(\frac{d^{2} y}{d x^{2}}\right)
$$

[squaring both sides]

$$
\begin{aligned}
& \Rightarrow\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{5}=\left\{3\left(\frac{d y}{d x^{2}}\right)\right\}^{2} \\
& \Rightarrow\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{5}=9\left(\frac{d y y}{d x^{2}}\right)^{2}
\end{aligned}
$$

- Order $=2$
- Degree = 2

Solution of Differential equation

- Let us take a differential eq n ${ }^{\mathrm{n}}$ and a function

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+y=0 \tag{2}
\end{equation*}
$$

$$
y=a \sin (x+b)
$$

[where a, b are real number]
then

$$
\begin{array}{ll}
\Rightarrow \frac{d y}{d x}=a \cos (x+b) & \text { [differentiating eq } \left.q^{n}(2)\right] \\
\Rightarrow \frac{d^{2} y}{d x^{2}}=-a \sin (x+b) & {[\text { differentiating again] }}
\end{array}
$$

contd..

now putting the values of $y \& \frac{d^{2} y}{d x^{2}}$ in $e q^{n}(1)$

$$
\begin{aligned}
& \text { L.H.S } \Rightarrow \frac{d^{2} y}{d x^{2}}+y=-a \sin (x+b)+a \sin (x+b)=0 \\
& \text { R.H.S } \Rightarrow 0 \quad \text { L.H.S }=\text { R.H.S }
\end{aligned}
$$

- so we conclude that:
$y=a \sin (x+b)$ is solution of differential equation

$$
\frac{d^{2} y}{d x^{2}}+y=0 \text { as it satisfies the equation. }
$$

Note:- a function is said to be solution of a differential equation if it satisfies the equation.

Two types of solution

A. General or complete solution
B. Particular solution

General or complete solution

- A solution which contains the number of arbitrary constant equal to the order of the differential equation is called a general solution.
Exanple:
$y=a \sin (x+b)$ is general solution of differential equation

$$
\frac{d^{2} y}{d x^{2}}+y=0
$$

- Order of differential equation $=2$
${ }^{\circ} \mathbf{a}, \mathbf{b}$ are two arbitrary constants in the solution.

Particular solution

- A particular solution of a differential equation is a solution obtained from the general solution by giving some particular values to the arbitrary constants.
Exænple:
$y=2 \sin (x+5)$ is particular solution of $\quad \begin{aligned} & \text { differential equation } \frac{d^{2} y}{d x^{2}}+y=0\end{aligned}$

Solution of Differential equation

Solution of $1^{\text {st }}$ order and $1^{\text {st }}$ degree equation by:
A. Separation of variables
B. Solution of linear Differential equation of first order

Separation of variables

- Consider the Differential equation

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y) \tag{1}
\end{equation*}
$$

- Equation (1) can be separable of variables
$\Rightarrow \frac{d y}{d x}=f_{1}(x) f_{2}(y)$
$\Rightarrow \frac{d y}{f_{2}(y)}=f_{1}(x) d x$
- Integrating both sides
$\Rightarrow \int \frac{d y}{f_{2}(y)}=\int f_{1}(x) d x+C$
- Which is a complete solution

Question โ

- Solve

$$
\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}
$$

- Sol ${ }^{n}$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{1+y^{2}}=\frac{d x}{1+x^{2}} \\
& \Rightarrow \int \frac{d y}{1+y^{2}}=\int \frac{d x}{1+x^{2}} \\
& \Rightarrow \tan ^{-1} y=\tan ^{-1} x+C \text { antegrating both sides] } \\
& \text { answer }
\end{aligned}
$$

Question 2

- Solve

$$
\mathrm{e}^{\mathrm{x}} \tan \mathrm{y} \mathrm{dx}+\left(1+\mathrm{e}^{\mathrm{x}}\right) \sec ^{2} \mathrm{y} \mathrm{dy}=0
$$

- Sol ${ }^{n}$
$\Rightarrow e^{x} \tan y d x+\left(1+e^{x}\right) \sec ^{2} y d y=0$
$\Rightarrow\left(1+e^{x}\right) \sec ^{2} y d y=-e^{x} \tan y d x$ $\sec ^{2} y d y=-e^{x} d x$
tan $\quad\left(1+\mathrm{e}^{\mathrm{x}}\right)$
[integrating both sides]

contd..

contd..

$$
\begin{aligned}
& \text { For } \mathrm{I}_{1} \\
& \text { Let } \operatorname{tany}=u \\
& \Rightarrow \quad \sec ^{2} \mathbf{y}=\frac{\mathrm{d} u}{\mathrm{dy}} \\
& \Rightarrow \quad \sec ^{2} \mathbf{y} \mathrm{dy}=\mathrm{d} u \\
& \Rightarrow \quad \int \frac{\sec ^{2} \mathbf{y}}{\tan \mathbf{y}} \mathrm{dy}=\int \frac{\mathrm{d} u}{\mathrm{u}} \\
& \Rightarrow=\log u \\
& \Rightarrow=\log \tan \mathbf{y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - For } I_{2} \\
& \text { Let } \quad\left(1+\mathrm{e}^{\mathrm{x}}\right)=v \\
& \Rightarrow \quad \mathrm{e}^{\mathrm{x}}=\frac{\mathrm{d} v}{\mathrm{dx}} \\
& \Rightarrow \quad \mathrm{e}^{\mathrm{x}} \mathrm{dx}=\mathrm{dv} \\
& \Rightarrow-\int \frac{\mathrm{e}^{\mathrm{x}} \mathrm{dx}}{\left(1+\mathrm{e}^{\mathrm{x}}\right)}=-\int \frac{\mathrm{d} v}{\mathrm{v}} \\
& \Rightarrow \quad=-\log v \\
& \Rightarrow \quad=-\log \left(1+\mathrm{e}^{\mathrm{x}}\right)
\end{aligned}
$$

Eg n ${ }^{n}$ (1) becomes:

$$
\Rightarrow \quad \log \tan y=-\log \left(1+e^{x}\right)+C \text { answer }
$$

Solution of linear Differential equation of first order

- A differential equation in which the dependent variable and all its derivatives occur in the $1^{\text {st }}$ degree only and are not multiplied together is called a Linear Differential equation.
- Standard form of linear differential equation (1st $\frac{d y}{d x}+P y=Q$
- where P and Q may be constant or only a function of x .
- coefficient of $\frac{d y}{d x}$ is always unity.

contd..

method of solution

- Step 1
- Find I.F (Integrating factor)

$$
\Rightarrow \quad e^{\int p d x}
$$

- Step 2
- Then the complete solution is given by

$$
y \times I . F=\int\{Q \times(I . F)\} d x+C
$$

©(uestion \{1

- Solve

$$
\frac{d y}{d x}+y \tan x=\sec x
$$

- Soln It is in its standard form

$$
\Longrightarrow \begin{array}{ll}
\frac{d y}{d x}+P y=Q & {[P=\tan x]} \\
{[Q=\sec x]}
\end{array}
$$

contd..

complete solution is given by:

$$
y \times I . F=\int\{Q \times(I . F)\} d x+C
$$

$\Longrightarrow y \times \sec x=\int\{\sec x \times \sec \mathbf{x}\} d x+C$
$\Longrightarrow y \sec x=\int\left\{\sec ^{2} \mathbf{x}\right\} d x+C$
$\Longrightarrow y \sec x=\tan x+C$ answer
(2)uestion 2

- Solve

$$
x \frac{d y}{d x}+2 y=4 x^{2}
$$

- Sol ${ }^{n}$ it is not in its standard form

$$
\frac{d y}{d x}+\frac{2 y}{x}=4 x
$$

[divide by 'x'on both sides]
now it is in the standard form

$$
\left[P=\frac{2}{x} \quad\right]
$$

$$
[\mathrm{Q}=\hat{4 x}]
$$

$I . F \xrightarrow[e^{\int p d x}]{ }$

$\Rightarrow e^{\int \frac{2}{x} d x} \Rightarrow e^{2 \int \frac{1}{x} d x}$
$\Rightarrow e^{2 \log x}$
$e^{\log x^{2}}$

contd..

complete solution is given by:

$$
y \times I . F=\int\{Q \times(I . F)\} d x+C
$$

$\Rightarrow y x^{2}=\int\left(4 x \cdot x^{2}\right) d x+C$
$\Rightarrow y x^{2}=\int\left(4 x^{3}\right) d x+C$
$\Rightarrow y x^{2}=\frac{4 x^{4}}{4}+C$
$\Rightarrow y x^{2}=x^{4}+C$
@గsWer

©uestion 3

- Solve

$$
\left(1+x^{2}\right) \frac{d y}{d x}+2 x y-x^{3}=0
$$

- Sol ${ }^{n}$
it is not in its standard form
$\Rightarrow \frac{d y}{d x}+\frac{2 x y}{1+x^{2}}-\frac{x^{3}}{1+x^{2}}=0$ [divide by ' $1+x^{2}$ ' on both sides]

$$
\frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{x^{3}}{1+x^{2}}
$$

now it is in the standard form

$$
\begin{aligned}
& {\left[P=\frac{2 x}{1+x^{2}}\right]} \\
& {\left[Q=\frac{x^{3}}{1+x^{2}}\right]}
\end{aligned}
$$

contd..

contd..

complete solution is given by:

$$
y \times I . F=\int\{Q \times(I . F)\} d x+C
$$

$\Rightarrow y\left(1+x^{2}\right)=\int\left(\frac{x^{3}}{1+x^{2}}\right)\left(1+x^{2}\right) d x+C$
$\Rightarrow y\left(1+x^{2}\right)=\int x^{3} d x+C$
$\Rightarrow y\left(1+x^{2}\right)=\frac{x^{4}}{4}+C$

Prepared by: Pragyan Priyadarsini
Lecturer in Mathematics
Jajpur Govt. Polytechnic, Odisha

Scalars and Vectors

A scalar quantity is a quantity that has only magnitude.
A vector quantity is a quantity that has both a magnitude and a direction.

Scalar quantities
Length, Area, Volume, Speed,
Mass, Density
Temperature, Pressure Energy, Entropy Work, Power

Vector quantities Displacement, Direction, Velocity, Acceleration, Momentum, Force, Electric field, Magnetic field

scalar

- only magnitude (size)
- 3.044, -7 and $2^{1 / 2}$

Example:

- Distance $=3 \mathrm{~km}$
- Speed $=9 \mathrm{~km} / \mathrm{h}$
(kilometers per hour)

vector

- magnitude and direction

- Displacement $=3 \mathrm{~km}$

Southeast

- Velocity $=9 \mathrm{~km} / \mathrm{h}$ Westwards

Distance is a scalar quantity, whereas displacement is a vector quantity.

Scalar and Vector Quantities

Vector - Notation/ Denoted as

- It is denoted as 'vector $\overrightarrow{A B}$ ' or 'vector \vec{a} '.
- point A from where the vector starts is called its initial point
- point B where it ends is called its terminal point.
- The distance between initial and terminal points of a vector is called the magnitude (or length) of the vector, denoted as $|\overrightarrow{\mathrm{AB}}|$, or $|\overrightarrow{\mathrm{a}}|$, or a.
- The arrow indicates the direction of the vector.

Types of vector

- zero or null vector
- unit vector
- negative of a vector
- co-initial vectors
- co-terminus vectors
- equal vectors
- collinear or parallel vectors

zero or null vector

- initial and terminal points coincident
- denoted by $\Rightarrow \overrightarrow{0}$
- Magnitude $\Rightarrow 0$ (zero)

unit vector

- Magnitude $\Rightarrow \mathbf{1}$ (unit magnitude, $\mathrm{A}=1$)
- denoted as $\Rightarrow \hat{a}$
- purpose $\quad \Rightarrow$ specify a direction in space

$$
\begin{aligned}
& \text { YECTORA } \longleftarrow \vec{A}=\mathrm{A} \hat{A} \\
& \begin{aligned}
A & =\text { magnitude of } \vec{A} \\
\hat{A} & =\text { unit vector along } \vec{A}
\end{aligned}
\end{aligned}
$$

Cartesian unit vectors

negative of a vector

- Vector of same magnitude
- but opposite direction

Vector

Negative Vector

The negative vector of $\overrightarrow{A B}$ is $-\overrightarrow{A B}=\overrightarrow{B A}$

equal vectors

- same magnitude (size) as well as direction

$$
\vec{A}=\vec{B}
$$

co-initial vectors

- same starting point

co-terminus vectors

- same terminal point

collinear or parallel vector
- collinear vectors \Rightarrow lying on one line

A collinear vector

- parallel vectors \Rightarrow lying parallel to each other

parallel vector

position vector

- Vector having initial point is at origin. Here $\overrightarrow{\mathrm{OP}}$ is the position vector of point ' P '.

Representation of vectors in terms of the position vectors

- Let A and B be two given points.
- Then $\overrightarrow{O A}$ and $\overrightarrow{O B}$ are the position vectors of A and B
- Then AB can be represented as:

$$
\Rightarrow \overrightarrow{A B}=\text { p.v. of } B-\text { p.v. of } A
$$

$$
\Rightarrow \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}
$$

Components of a vector in two dimensions

Let \hat{i} and \hat{j} be the unit vectors along x -axis and y -axis

Then $\begin{aligned} & \overrightarrow{\mathrm{OM}}=x \hat{\mathrm{i}} \\ & \overrightarrow{\mathrm{MP}}=\mathrm{y} \hat{\mathrm{i}}\end{aligned}$
Then $\overrightarrow{\mathrm{OP}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{j}}$ [by Triangle law of addition]

as in Δ OPM
$(\mathrm{OP})^{2}=(\mathrm{OM})^{2}+(\mathrm{PM})^{2}$
$\Rightarrow(\mathrm{OP})^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}$
$\Rightarrow \mathrm{OP}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}$

Components of a vector in three dimensions

Let $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be a point in 3 D
Here \hat{i}, \hat{j} \& \hat{k} are unit vectors along X-axis, Y-axis \& Z-axis respectively

Then

$$
\begin{aligned}
& \overrightarrow{\mathrm{OA}}=\mathrm{x} \hat{\mathrm{i}} \\
& \overrightarrow{\mathrm{OB}}=\mathrm{y} \hat{\mathrm{j}} \\
& \overrightarrow{\mathrm{OC}}=\mathrm{z} \hat{\mathrm{k}}
\end{aligned}
$$

$$
\text { So } O P=x \hat{i}+y \hat{j}+z \hat{k}
$$

$$
\text { and }|\mathrm{OP}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}
$$

Operations on vectors

- Addition of two vectors
- Triangle law of addition
- Parallelogram law of addition
- Subtraction of two vectors
- Multiplication
- of a vector with a scalar
- of two vectors by Dot product
- of two vectors Cross product

Adding Vectors by triangle law of addition

- We can add two vectors by joining them head-to-tail

triangle law of vector addition - states that if two vectors represented by 2 sides of the triangle then their sum is represented by the third side of the triangle but in the reverse order.

Adding Vectors by parallelogram law of vectors

- We can also add two vectors having a same origin

parallelogram law of vector addition - states that if 2 vectors $\vec{a} \& \vec{b}$ are represented by 2 adjacent sides of a parallelogram, then their sum $\vec{a}+\vec{b}$ is represented by the diagonal of the paralleogram through their initial point.

Subtracting vectors

- Let \vec{a} and \vec{b} be two vectors, reverse the direction of the vector $\overrightarrow{\mathrm{b}}$ then add as usual:

Multiplying a Vector by a Scalar

- product of the vector \vec{a} by the scalar $\lambda=\lambda \vec{a}$
- magnitude $\Longrightarrow|\lambda \vec{a}|=|\lambda||\vec{a}|$

Example: $\vec{a} \times 2=2 \vec{a}$ magnitude $=|2 \vec{a}|=|2||\vec{a}|=2 \mathrm{a}$
 8

Addition of two vectors in components

$$
\text { Let } \vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} ; \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}
$$

Then $\overrightarrow{a+b}=\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right)+\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)$

$$
\Rightarrow\left(a_{1}+b_{1}\right) \hat{i}+\left(a_{2}+b_{2}\right) \hat{j}+\left(a_{3}+b_{3}\right) \hat{k}
$$

Subtraction of two vectors in components

$$
\text { Then } \begin{aligned}
\vec{a}-\vec{b} & =\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right)-\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right) \\
& \Rightarrow\left(a_{1}-b_{1}\right) \hat{i}+\left(a_{2}-b_{2}\right) \hat{j}+\left(a_{3}-b_{3}\right) \hat{k}
\end{aligned}
$$

Multiplication of a vector with scalar

Let λ be a scalar
$\Rightarrow \quad a=a_{1} i+a_{2} j+a_{3} k$
Then $\lambda \vec{a}=\lambda\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right)$
$\Rightarrow \lambda a_{1} \hat{i}+\lambda a_{2} \hat{j}+\lambda a_{3} \hat{k}$

Multiplication of 2 vectors

- By using Scalar/ Dot product
- By using Vector/ Cross product

Scalar or Dot Product

- Let $\vec{a} \& \vec{b}$ be two vectors.
- Then dot product of them is denoted by $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$
- and defined as:

$$
\begin{aligned}
& \overrightarrow{\mathbf{a} \cdot \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}}| \times|\overrightarrow{\mathbf{b}}| \times \cos (\theta)} \\
& \overrightarrow{\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \times \mathbf{b} \times \cos (\theta)} \\
& \overrightarrow{\mathbf{a} \cdot \overrightarrow{\mathbf{b}}} \\
& \text { or } \cos (\theta)=\frac{\overrightarrow{\mathbf{a} \mid} \mid \overrightarrow{\mathbf{b} \mid}}{}
\end{aligned}
$$

Geometrical representation of Dot product

Here in the given figure
θ is the angle between the vectors $\vec{a} \& \vec{b}$
Consider the right angled triangle $\triangle \mathrm{OBL}$ then

$$
\cos \theta=\frac{\mathrm{b}}{\mathrm{~h}}=\frac{\mathrm{OL}}{\mathrm{OB}}=\frac{\mathrm{OL}}{|\overrightarrow{\mathrm{~b}}|}
$$

$|\overrightarrow{\mathrm{b}}| \cos \theta=\mathrm{OL}$
and OL is known as projection of \vec{b} on \vec{a}
as we know $\underset{\rightarrow \rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{\overrightarrow{\mathrm{a}}} \overrightarrow{\mathrm{a} \mid} \overrightarrow{\mathrm{a}}|\overrightarrow{\mathrm{b}}| \cos \theta$

$$
\begin{aligned}
& \overrightarrow{a \cdot \vec{b}}=\vec{a} \mid O L \\
& \overrightarrow{a \cdot \vec{b}}=O L \\
& \overrightarrow{|a|}
\end{aligned}
$$

So scalar projection of $\overrightarrow{\mathrm{b}}$ on $\overrightarrow{\mathrm{a}}$

$$
=\frac{\overrightarrow{\mathrm{a} \cdot \mathrm{~b}}}{\vec{\rightarrow}}
$$

$\overrightarrow{a \mid} \mid$

Continued..

Again consider the right angled triangle $\triangle \mathrm{OAM}$ then

$$
\cos \theta=\frac{\mathrm{b}}{\mathrm{~h}}=\frac{\mathrm{OM}}{\mathrm{OA}}=\frac{\mathrm{OM}}{\mid \overrightarrow{\mathrm{a} \mid}}
$$

$|\overrightarrow{\mathrm{a}}| \cos \theta=\mathrm{OM}$

and OM is projection of \vec{a} on \vec{b}
as we know $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$

$$
\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}=|\overrightarrow{\mathrm{b}}| \mathrm{OM}
$$

$$
\frac{\overrightarrow{\mathrm{a} \cdot \mathrm{~b}}}{\overrightarrow{|\overrightarrow{\mathrm{~b}}|}}=\mathrm{OM}
$$

So scalar projection of \vec{a} on \vec{b}

$$
=\frac{\vec{a} \cdot \vec{b}}{\overrightarrow{|\vec{b}|}}
$$

Dot product in terms of components

Let

$$
\binom{\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}}{\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}}
$$

We have

$$
\binom{\hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{i}=0}{\text { or } \hat{j} \cdot \hat{i}=\hat{k} \cdot \hat{j}=\hat{i} \cdot \hat{k}=0} \quad 1
$$

Then

$$
\vec{a} \cdot \vec{b}=\left[a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right] \cdot\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)
$$

$$
\text { (1) } \underset{\rightarrow \rightarrow}{\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}
$$

$$
\text { (2) } \cos \theta=\frac{\overrightarrow{\mathrm{a} \cdot \overrightarrow{\mathrm{~b}}}}{\overrightarrow{|\vec{a}||\overrightarrow{\mathrm{b}}|}} \Rightarrow \cos \theta=\xlongequal{\sqrt{\mathrm{a}_{1} \mathrm{~b}_{1}+{ }^{2}+\mathrm{a}_{2} \mathrm{a}_{2}{ }^{2}+{ }^{2}+\mathrm{a}_{3}{ }^{2}{ }^{2} \mathrm{~b}_{3}} \sqrt{\mathrm{~b}_{1}{ }^{2}+\mathrm{b}_{2}{ }^{2}+\mathrm{b}_{3}{ }^{2}}}
$$

Continued.

(3) If \vec{a} is perpendicular to \vec{b}

Then $\theta=90^{\circ} \longrightarrow \cos \theta=\cos 90^{\circ}=0$
$\Rightarrow \cos \theta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{\overrightarrow{\mathrm{a}| | \overrightarrow{\mathrm{b}} \mid}}$

Continued..
(4) If $\vec{a} \& \vec{b}$ are parallel to each other

$$
\Rightarrow \quad \frac{\mathrm{a}_{1}}{\mathrm{~b}_{1}}=\frac{\mathrm{a}_{2}}{\mathrm{~b}_{2}}=\frac{\mathrm{a}_{3}}{\mathrm{~b}_{3}}
$$

(5) $\vec{a} \cdot \vec{a}=|\vec{a}| \vec{a} \mid \cos 0$

$$
\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{a}}=\left.\overrightarrow{\mathrm{a}}\right|^{2}
$$

Vector or Cross Product

- The Vector Product of two vectors is denoted by $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ and defined as:

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta \cdot \hat{\mathbf{n}}
$$

where:
$|\vec{a}| \&|\vec{b}|=$ magnitude
$\theta=$ angle between $\mathrm{a} \& \mathrm{~b}$
$\hat{\mathrm{n}}=$ unit vector perpendicular to both $\overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{~b}}$

Continued.. we have $\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta . \hat{n}$

Geometrical representation of vector product

Then it is concluded that:

$$
\text { Area of } \Delta \mathrm{ABC}=1 / 2|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|
$$

Vector product in terms of components

Let

$$
\binom{\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}}{\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}}
$$

And from a right handed system of mutually perpendicular vector
We have:

$$
\left(\begin{array}{ll}
\hat{i} \times \hat{j}=\hat{k} & \text { or } \hat{j} \times \hat{i}=-\hat{k} \\
\hat{j} \times \hat{k}=\hat{i} & \hat{k} \times \hat{j}=-\hat{i} \\
\hat{k} \times \hat{i}=\hat{j} & \hat{i} \times \hat{k}=-\hat{j}
\end{array}\right) \quad \hat{j}
$$

And $\quad(\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=\overrightarrow{0})$
So

$$
\vec{a} \times \vec{b}=\left|\begin{array}{lll}
\hat{n} & \hat{a} & \hat{a}_{1} \\
i & \dot{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

