QUESTION BANK

ENGINEERING MATHEMATICS -I
$\mathbf{1}^{\text {ST }}$ SEMISTER (All Branches)

Prepared By Pragyan Priyadarsini (Lecturer Math)

MODULE-1

MATRICES AND DETERMINANT

SHORT ANSWER TYPE QUESTION (2MARKS AND 5MARKS)

1. Solve $\left|\begin{array}{cc}4 & x+1 \\ 3 & x\end{array}\right|=5$.
2. Find the value of $\left|\begin{array}{ccc}-6 & 0 & 0 \\ 3 & -5 & 7 \\ 2 & 8 & 11\end{array}\right|$.
3. Find the minimam value of $\left|\begin{array}{cc}\sin x & \cos x \\ -\cos x & 1+\sin x\end{array}\right|$.
4. If $\left|\begin{array}{lll}a & b & c \\ b & a & b \\ x & b & c\end{array}\right|=0$, find x.
5. Solve by cramers rule $2 x-y=3, x+2 y=4$.

Find the value of $\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|$.
6. Construct a 2×3 matrix having elements given by $a_{i j}=i+j$.
7. Find x and y when $\left[\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}4 \\ 1\end{array}\right]$.
8. Find the adjoint of matrix $\left[\begin{array}{cc}1 & -w \\ w^{2} & 1\end{array}\right]$.
9. Given $\left[\begin{array}{lll}x & y & z\end{array}\right]-\left[\begin{array}{lll}-4 & 3 & 1\end{array}\right]=\left[\begin{array}{lll}-5 & 1 & 0\end{array}\right]$.
10. Write down the matrix $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ if $a_{i j}=2 \mathrm{i}+3 \mathrm{j}$.
11. Find the value of the determinant $\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|$.
12. Solve the determinant $\left|\begin{array}{ccc}1+x & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+x\end{array}\right|=0$.
13. Prove that $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$.
14. Solve by cramers rule $x+y+z=3$

$$
\begin{gathered}
2 x+3 y+4 z=9 \\
x+2 y-4 z=-1 .
\end{gathered}
$$

15. Prove that $\left|\begin{array}{lll}a & a^{2} & a^{3} \\ b & b^{2} & b^{3} \\ c & c^{2} & c^{3}\end{array}\right|=\operatorname{abc}(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})$.
16. Find the inverse of the matrix $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$.
17. Find the adjoint of the matrix $\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & -1 & 2 \\ 1 & 3 & -2\end{array}\right]$
18. Find the inverse of the matrix $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$.
19. Solve by matrix method $x-y+z=4,2 x+y-3 z=0, x+y+z=2$.

LONG QUESTIONS (10 MARKS)

1. (a) find the adjoint of the matrix $\left[\begin{array}{ccc}-2 & 2 & 3 \\ 1 & 4 & 2 \\ -2 & -3 & 1\end{array}\right]$.
(b) Solve by matrix method $x+y-z=6,2 x-3 y+z=1,2 x-4 y+2 z=1$.
2. Prove that $\left|\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ b c & c a & a b\end{array}\right|=(a-b)(b-c)(c-a)(a b+b c+c a)$.
3. Solve by cramers rule $x-y+z=1,2 x+3 y-5 z=7,3 x-4 y-2 z=-1$.
4. Prove that $\left|\begin{array}{ccc}x+a & b & c \\ a & x+b & c \\ a & b & x+c\end{array}\right|=x^{2}(\mathrm{x}+\mathrm{a}+\mathrm{b}+\mathrm{c})$.
5. (a) Verify $(A B)^{T}=B^{T} A^{T}$ where $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & -2 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}1 & 2 \\ 2 & 0 \\ -1 & 1\end{array}\right]$.
(b) Find the inverse of $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 4 \\ 1 & 0 & 2\end{array}\right]$.

MODULE-2

TRIGONOMETRY

SHORT ANSWER TYPE QUESTION (2MARKS AND 5MARKS)

1. Find the value of $\tan (-840)^{\circ}$.
2. Find the value of $\tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3$.
3. Prove that $2 \sin 105^{\circ} \cdot \sin 15^{\circ}$.
4. Find the value of $\frac{\tan 15^{\circ}}{1-\tan ^{2} 15}$.
5. If $\tan \alpha=\frac{1}{2}, \tan \beta=\frac{1}{3}$ then find the value of $(\alpha+\beta)$.
6. If $\frac{1+\sin A}{\cos A}=\sqrt{2}+1$, then find the value of $\frac{1-\sin A}{\cos A}$.
7. Find the minimum value of $\sin \theta \cdot \cos \theta$.
8. Find the value of $\tan \frac{\pi}{20} \tan \frac{3 \pi}{20} \tan \frac{5 \pi}{20} \tan \frac{7 \pi}{20} \tan \frac{9 \pi}{20}$.
9. Find the value of $\sin ^{2} 24^{\circ}-\sin ^{2} 6^{\circ}$.
10. Find the value of $\cos \left[\sin ^{-1}\left(\frac{-1}{2}\right)\right]$.
11. Prove that $\sin 20^{\circ} \cdot \sin 40^{\circ} \cdot \sin 60^{\circ} \cdot \sin 80^{\circ}=\frac{3}{16}$.
12. Find the value of $\sin 18^{\circ}$ and $\cos 36^{\circ}$.
13. If $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$, then prove that $\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \cdot \sin B \cdot \sin C$
14. If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$ show that $x y+y z+z x=1$.
15. Prove that $\frac{\cos 9^{\circ}+\sin 9^{\circ}}{\cos 9^{\circ}-\sin 9^{\circ}}=\tan 54^{\circ}$.
16. Find the maximum and minimum values of $5 \sin x+12 \cos x$.
17. Find the value of $\tan 75^{\circ}$ and hence prove that $\tan 75^{\circ}+\cot 75^{\circ}=4$
18. Prove that $\sin ^{-1} \frac{4}{5}+2 \tan ^{-1} \frac{1}{3}=\frac{\pi}{2}$.

LONG QUESTIONS (10 MARKS)

1. If $A+B=45^{\circ}$ Prove that
(i) $(1+\tan A)(1+\tan B)=2$. Deduce the value of $\tan 22_{2}^{1^{\circ}}$.
(ii) $(\cot A-1)(\cot B-1)=2$.
2. (a) Prove that $\cot 71_{2}^{\circ}=\sqrt{6}+\sqrt{3}+\sqrt{2}+2$.
(b) Prove that $\sin A+\sin B+\sin C=4 \sin \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2}$.
3. If $\sin A=K \sin B$, prove that $\tan \frac{1}{2}(A-B)=\frac{K-1}{K+1} \tan \frac{1}{2}(A+B)$.
4. Prove that $2 \cos \frac{\pi}{16}=\sqrt{2+\sqrt{2+\sqrt{2}}}$.
5. (i) If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\pi$, show that $x \sqrt{1-x^{2}}+y \sqrt{1-y^{2}}+z \sqrt{1-z^{2}}$.
(ii) If $\sec (\emptyset+\alpha)+\sec (\emptyset-\alpha)=2 \sec \emptyset$, show that $\cos \emptyset=\sqrt{2} \cos \frac{\alpha}{2}$.
6. (a) Prove that $\cos ^{2} A+\cos ^{2} B+2 \cos A \cdot \cos B \cdot \cos C=\sin ^{2} C$.
(b) Prove that $2 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{4}=\tan ^{-1} \frac{8}{53}$.

MODULE-3

TWO DIMENSIONAL GEOMETRY

SHORT ANSWER TYPE QUESTION (2MARKS AND 5MARKS)

1. Find the distance between the points $P(-3,2)$ and $Q(2,-1)$.
2. If the area of the triangle with the vertices $(0,0),(1,0),(0, a)$ is 10 units, find the value of a?
3. Find the equation of a line which cuts off an intercept -2 on the axis of " y " and makes an angle 45° with positive direction of x-axis.
4. Find the co-ordinate of the point dividing the joining of $(3,7)$ and $(-1,-5)$ internally in the ratio $2: 3$.
5. Find the equation of the line passing through ($-1,2$) and making intercepts on the y-axis.
6. Reduce $3 x+5 y+4=0$ to the intercept form and y-intercept.
7. Find the centre and radius of the circle $2 x^{2}+2 y^{2}-5 x+3 y-11=0$.
8. Determine the distance between the parallel lines $x+5=0$ and $x-5=0$.
9. Find the equation of a circle with centre $(-3,2)$ and radius 7 .
10. Determine the equation of the straight line parallel to x-axis and passing through $(3,4)$.
11. Find the equation of a straight line that passes through the point $(3,4)$ and perpendicular to the line $3 x+2 y+5=0$.
12. Find the equation of line passing through the point of intersection of lines $x+3 y+2=0$ and $x-2 y-$ $4=0$ and perpendicular of the line $2 y+5 x-9=0$.
13. Find the equation of straight line passing through ($-2,3$) and sum whose intercept is 2 .
14. Find the equation of bisecting the line segment joining $(3,-4)$ and $(1,2)$ at right angle.
15. Show that the points $A(-1,4), B(0,2), C(2,-2)$ are collinear.
16. Find the equation of a circle whose end points of diameter are $(-5,3)$ and $(7,5)$.
17. Find the equation of the line through the point of intersection of $3 x+4 y-7=0$ and $x-y+2=0$ and which is parallel to the line $5 x-y+11=0$.
18. Show that the points $(1,1),(4,4),(4,8)$ and $(1,5)$ are the vertices of the parallelogram.
19. Find the co-ordinate of the point which divide internally and externally the line joining $(1,-3)$ and $(-3,9)$ in the ratio 1:3.
20. Find the equation of the circle passing through the points $(3,4)(4,-3)$ and $(-3,4)$.

LONG QUESTIONS (10 MARKS)

1.(a) Find the equation of the line passing through the intersection of $2 x-y-1=0$ and $3 x-4 y+6=0$ and parallel to the line $x+y-2=0$
(b) Find the equation of the circle passing through the points $(1,-2)$ and its centre at the point of intersection of lines $2 x-y+3=0$ and $x+2 y-1=0$.
2. (a) Find the co-ordinates of the foot of the perpendicular from the point $(2,3)$ on the line $3 x-4 y+7=0$
(b) Find the equation of the line passing through ($-4,2$) and parallel to the line $4 x-3 y=0$.
3. Find the equations of straight lines passing through the point $(3,-2)$ and making an angle 45° with the line $6 x+5 y=1$.
4. Find the distance of the point $(3,2)$ from the line $x+y-1=0$, measured parallel to the line $3 x-4 y+1=0$.
5. Find the equation of the circle whose Centre is on the line $8 x+5 y=0$ and the circle passing through the points $(2,1)$ and $(3,5)$.

MODULE-4

THREE DIMENSIONAL GEOMETRY

1. Determine the Centre and radius of the sphere $x^{2}+y^{2}+z^{2}-4 x+6 y-8 z+1=0$.
2. Determine the value of k such that the planes $r+3 y+k z=5$ and $k r+y+22=0$ are perpendicular to each other.
3. Find the image of the point $(-6,2,-3)$ w.r.t yz-plane.
4. Find the value of k such that the points $(1,-2,3)(3,-1,2)$ and $(7,1, k)$ are collinear .
5. Find out the equation of the plane passing through (1,1,2) and parallel to $x+y+z-1=0$.
6. Find the distance between the parallel planes $x-y+z+1=0 a n d y-z-x+1=0$.
7. Find the equation of the sphere with Centre $(3,-2,5)$ and radius 4 .
8. Find the direction cosines of the line passing through the two points $(-2,4,-5)$ and $(1,2,3)$.
9. Find the distance of the point $P(x, y, z)$ from z-axiz.
10. Find the projection of the line segment joining $(1,3,-1)$ and $(3,2,4)$ on z-axis .
11. Find the equation of the plane which passes through the point $(1,-1,4)$ and is parallel to the Plane $2 x+3 y+7 z=11$.
12. Find the angle between two planes $2 x+2 y-3 z=5$ and $3 x-3 y+5 z=3$.
13. Find the foot of the perpendicular drawn from the point $(0,0,0)$ on the plane $2 x+y+z-3=0$.
14. Find the equation of the sphere on the join of $(2,3,5)$ and $(4,9,-3)$ as diameter ?
15. Find the equation of the sphere with its centre at $(1,-2,3)$ and touching the plane $2 x-3 y+z+6=0$.
16. Show that points $(0,1,2),(2,5,8),(5,6,6)$ and $(3,2,0)$ are the vertices of the parallelogram.
17. Find the ratio in which the line joining the points $(2,-3,1),(3,-4,-5)$ by the laces $2 x+y+z=7$.
18. Show that $A(0,0,0), B(3,4,5), C(-3,-4,-5)$ are collinear.

LONG QUESTIONS (10 MARKS)

1. Find the equation of the sphere passing through the point $(1,2,-3)$ and $(3,-1,2)$ and centre lying on y-axis.
2. Show that the points $A(1,2,3), B(-1,-2,-1), C(2,3,2)$ and $D(4,7,6)$ are the vertices of a parallelogram $A B C D$, but it is not a rectangle.
3. Find the equation of the plane which is perpendicular to the plane $5 x+3 y+6 z+8=0$ and contains the line of intersection of the plane $x+2 y+3 z-4=0$ and $2 x+y-z+5=0$.
4. Find the equation of the sphere which passes through the points $(0,0,0),(0,1,0),(1,0,0)$ and (0,0,1).
5. (a) Find the equation of sphere with its centre at $(1,-2,3)$ and touching the plane $2 x-3 y+z+6=0$.
(b) Find the equation of the plane through the points $(2,1,0)$ and passing through intersection of the planes $3 x-2 y+z-1=0$ and $x-2 y+3 z-1=0$
6. Find the equation of the plane containing the line of intersection of the plane $x+y+z+1=0,2 x-$ $3 y+5 z-2=0$ and passing through the point $(-1,2,1)$.
