GOVERNMENT POLYTECHNIC JAJPUR

A/ P: Ragadi, Block: Korei, Dist.: Jajpur, Odisha- 755019

Website: https://www.gpjajpur.org E-mail: principalgpjajpur@yahoo.co.in Contact: 9437155107

DEPARTMENT OF MECHANICAL ENGINEERING

		LESSON PLAN (2023-2024)	
Discipline: Mechanical	Semester: 3RD	Name of the Teaching faculty: GITANJALI SETHI	
Subject: Strength of Material (Th-2)	No of Days/ Week class alloted: 4	Semester from Date: 01.08.2023 To Date: 31.11.2023 No of weeks: 15	
Week	Class Day	Topics	
		CH. 1 SIMPLE STRESS & STRAIN.	
	1st	Types of load, stresses & strains,(Axial and tangential)	
1st	2nd	Hooke's law, Young's modulus	
-	3rd	bulk modulus, modulus of rigidity, Poisson's ratio, derive the relation between three elastic constants,	
	4th	Numerical on above	
	1st	Principle of super position, Stresses in composite section	
	2nd	Numerical on above.	
2nd	3rd	Temperature stress, Determine Temperature stress in compositebar (single core).	
	4th	Numerical on above.	
	1st	Strain energy and resilience, Stress due to gradually applied load.	
	2nd	Stress due to suddenly applied and impact load	
3rd	3rd	CH. 2 Thin cylinder and spherical shell under internal pressure.	
		Definition of Hoop and longitudinal stress and strain.	
	4th	Derivation of Hoop stress and longitudinal stress	
	1st	Numerical on above.	
	2nd	Derivation of Hoop strain, longitudinal strain and volumetric strain	
4th	3rd	Numerical on above.	
	4th	Computation of Change in length, diameter and volume	
	lst	Numerical on above.	
	2nd	Revision and test	
5th	3rd	CH. 3. Two dimensional stress system.	
		Introduction to 2-dimensional stress system; Concept of Principal plane, Principal stress and strain; Stresses in oblique plane	
	4th	Determination of normal stress, shear stress and resultant stress on an oblique plane of a body	

	lst	Determination of normal stress, shear stress and resultant stress on an oblique plane of a body			
6th	2nd	Numerical on above.			
	3rd	Location of principal plane and computation of principal stress			
	4th	Location of principal plane and computation of principal stress			
	lst	Numerical on above.			
7th	2nd	Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle			
	3rd	Numerical on above.			
	4th	Numerical on above.			
	let	CH4 Bending moment and shear force.			
	1st	Types of beam and load.			
	2nd	Concept of shear force and bending moment.			
8th	3rd	Shear Force and Bending moment diagram and its salient features illustration in cantilever beam subjected to point load.			
	4th	Shear Force and Bending moment diagram and its salient features illustration in cantilever beam subjected to U.D.L.			
	1st	Shear Force and Bending moment diagram and its salient features illustration in simply supported beam subjected to point load.			
9th	2nd	Shear Force and Bending moment diagram and its salient features illustration in simply supported beam subjected to U.D.L			
9th	3rd	Shear Force and Bending moment diagram and its salient features illustration in Over hanging beam subjected to point load.			
	4th	Shear Force and Bending moment diagram and its salient features illustration in Over hanging beam subjected to U.D.L.			
	1st	Numerical on above.			
	2nd	Revision and test			
10th	3rd	CH. 5 Theory of simple bending.			
	310	Assumptions in the theory of bending			
	4th	Bending equation			
	1st	Moment of resistance,			
	2nd	Introduction to Theory of simple bending,			
11th	3rd	Section modulus			
=	4th	Neutral axis			
	lst	Numerical on above.			
12th	2nd	CH. 6. Combined direct and bending stress.			
		Define column,types of column			
	3rd	Axial load, Eccentric load on column.			
	4th	Direct stresses, Bending stresses, Maximum & Minimum stresses			
	1st	Numerical on above.			
	2nd	Buckling load computation using Euler's formula (no derivation) in Columns with various end conditions			
13th	3rd	Numerical on above.Revision and test			
	4th	CH. 7. Torsion.			
		Assumption of pure torsion			

. .

	1st	Torsion equation for solid and hollow circular shaft
1.446	2nd	Numerical on above.
14th	3rd	Comparison between solid and hollow shaft subjected to pure torsion
	4th	Numerical on above.
	lst	Revision and test
450	2nd	Previous year question discussion.
15th -	3rd	Previous year question discussion.
	4th	VST

Learning resources:

Sl. No.	Author	Title of the book	Publisher	
01	S Ramamrutham	Strength of Materials	Dhanpat Rai	
02	R K Rajput	Strength of Materials	S.Chand	
03	R.S khurmi	Strength of Materials	S.Chand	
04	G H Ryder	Strength of Materials	Mc millon and co. lmtd	
05	S Timoshenko and D H	Strength of Materials	ТМН	
	Young			

Signature of Faculty

Go Sethir.

Sor. Lect. Mech.