Lecture note

ENGINEERING MECHANICS (Th-4)

 $1^{\text {st }}$ and $2^{\text {nd }}$ Semester (Diploma Course)

Prepared by:
SOUBHAGYA GHADAI
Lecturer in Mechanical Engineering (GF)
GP JAJPUR

FUNDAMENTALS OF ENGINEERING MECHANICS

Definitions of Mechanics -

1. A branch of physical science that deals with energy and forces and their effect on bodies.
2. the practical application of mechanics to the design, construction, or operation of machines or tools

Definitions of enginnering Mechanics
The subject engineering mechanics is the branch of applied science which deals with the laws and principles of mechanics, along with their applications to engineering problems .

Sub division of Engg. Mechanics

1. Particle: A particle is defined as an object that has a mass but no size.
2. Body: A body is defined as the matter limited in all directions. It has a finite volume ine finite mass.
3. Rigid Body: A body in which the particles do not change their relative positions under the action of any external force is called as Rigid Body. No body is perfectly rigid.
4. Deformable Body: A body in which the particles change their position under the action of any external force is called as Deformable body.
5. Mass: Mass of the body is the quantity of matter contained by the body.
6. Weight: The force with which the earth attracts any body to itself is called the weight of the body.

$$
\mathrm{W}=\mathrm{m} \cdot \mathrm{~g}
$$

7. Space: The unlimited universe in which all the materials are located is known as space. If is a three dimensional region.
8. Staties: It is the branch of engineering mechanics which deals with the study of bodies at rest under the uetion of forces.
9. Dymanies: It is the branch of engineering mechanics which deals with the study of bodies
10. Kinelies: This branch of dynamics is the study of the behaviour of bodies in motion without considering the forees which causing the motion.
11. Kinematics The kinematies studies the behaviour of bodies in motion by considering the forees which eausing the motiont
12. Force: It is the agent which changes or tends to change the state of rest or motion of a
body.

Force

Defination -

Force is an external agent capable of changing the state of rest or motion of a particular body. It has a magnitude and a direction. The direction towards which the force is applied is known as the direction of the force and the application of force is the point where force is applied.

The Force can be measured using a spring balance. The SI unit of force is Newton(N).

Common symbols:	$\mathrm{F} \rightarrow, \mathrm{F}$
SI unit:	Newton
In SI base units:	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$

Other units:	dyne, poundal, pound-force, kip, kilo pond
Derivations from other quantities:	$\mathrm{F}=\mathrm{m}$ a
Dimension:	LMT^{-2}

Classification of force system according to plane \& line of action

System of Forces

When two, or more than two, forces act on a body, they are called to form a system of forces. Following systems of forees are important from the subject point of view :

1. Coplaner forces. The forces, whose lines of action lie on the same plane, are known as coplaner forces.
2. Oollinear forces. The forees, whose lines of action lie on the same line, are known as collinear forces.
3. Concurrent forces. The forces, which meet at one point, are known as concurrent forces. The concurrent forces may or may not be collinear.
4. Coplaner concurrent forces. The forces, which meet at one point and their lines of action also lie on the same plane, are known as coplaner concurrent forces.
5. Coplaner non-concurrent forces. The forces which do not meet at one point, but their lines of action lie on the same plane, are known as coplaner non-concurrent forees.
6. Non-coplaner concurrent forces. The forces, which meet at one point, but their lines of action do not lie on the same plane, are known as non-coplaner concurrent forces.
7. Non-coplaner non-concurrent forces. The forces, which do not meet at one point and their lines of action do not lie on the same plane, are called non-coplaner non-concurrent forces.

Effects of a Force

A force may produce the following effects in a body, on which it acts :

1. It may change the motion of the body, i.e. if a body is at rest, the force may set the body in motion, and if the body is already in motion, the force may accelerate it.
2. It may retard the motion of a body.
3. It may retard the forces, already acting on a body, thus bringing it to rest or in equilibrium. We shall study this effect in chapter 5 of this book.
4. It may give rise to the internal stresses in the body, on which it acts. We shall study this effect in chapters 12 and 13 of this book.

Characteristics of a Force

In order to determine the effects of a force, acting on a body, we must know the following characteristios of a force :

1. Magnitude of the force (i.e., $10 \mathrm{kgf}, 20 \mathrm{tf}, 50 \mathrm{~N}, 15 \mathrm{kN}$, etc.)
2. The direction of the line, along which the force acts (i.e. along $O X, O Y$ or at 30° North or East ete.). It is also known as line of action of the force.
3. Nature of the force (i.e., whether the force is push or pull). This is denoted by placing an arrow head on the line of action of the force.
4. The point at which (or through which) the force acts on the body.

Principle of transmissibility

The state of rest or of motion of a rigid body is unaltered if a force acting on the body is replaced by another force of the same magnitude and direction but acting anywhere on the body along the line of action of the applied forces. In the following animation, two rigid blocks A and B are joined by a rigid rod. If the system is moving on a frictionless surface, the acceleration of the system in both the cases is given by,

Acceleration=Applied force/total mass
It is independent of the point of application

Principle of Superposition

This principle states that the combined effect of force system acting on a particle or a rigid body is the sum of effects of individual forces.

Consider two forces P and Q acting at A on a boat as shown in Fig.3.1. Let R be the resultant of these two forces P and Q. According to Newton's second law of motion, the boat will move in the direction of resultant force R with acceleration proportional to R. The same motion can be obtained when P and Q are applied simultaneously.

Action \& Reaction Forces

1. A force is a push or a pull that acts upon an object as a results of its interaction with another object.
2. Forces result from interactions but some forces result from contact interactions (normal, frictional, tensional, and applied forces are examples of contact forces) and other forces are the result of action-at-a-distance interactions (gravitational, electrical, and magnetic forces). According to Newton, whenever objects A and B interact with each other, they exert forces upon each other. When you sit in your chair, your body exerts a downward force on the chair and the chair exerts an upward force on your body. There are two forces resulting from this interaction - a force on the chair and a force on your body. These two forces are called action and reaction forces and are the subject of Newton's third law of motion. Formally stated, Newton's third law is:

For every action, there is an equal and opposite reaction.

The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object. The direction of the force on the first object is opposite to the direction of the force on the second object. Forces always come in pairs - equal and opposite action-reaction force pairs.

Concept of Free Body Diagram

> Free-body Diagrams. Toinvestigate the equilibrium of a constrained body, we shall always imagine that we remove the supports and replace them by the reactions which they exert on the body. Thus,

3.1. Free Body

A body is said to be free body if it is isolated from all other connected members.

3.2. Free Body Diagram

Free body diagram of a body is the diagram drawn by showing all the external forces and reactions on the body and by removing the contact surfaces.

Steps to be followed in drawing a free body diagram

1. Isolate the body from all other bodies.
2. Indicate the external forces on the free body.
(The weight of the body should also be incladed. It should be applied at the oentre of gravity of the body.)
3. The magnitude and direction of the known external forces should be mentioned.
4. The reactions exterted by the supports on the body should be clearly indicated.
5. Clearly mark the dimensions in the free body diagram.

Resolution of a Force

The process of splitting up the given force into a number of components, without changing its effect on the body is called resolution of a force. A force is, generally, resolved along two moutually perpendicular directions.

In fact, the resolution of a force is the reverse action of the addition of the component vectors.

2.13. Principle of Resolution

It states, "The algebraic sum of the resolved parts of a number of forces, in a given direction, is equal to the resolved part of their resultant in the same direction."

Proof

Now consider for simplicity, two forces P and Q; which are represented in magnitude and direction by the two adjacent sides $O A$ and $O B$ of a parallelogram $O A C B$ as shown in Fig. 2-2.

We know that the resultant (R) of these two forces P and Q will be represented, in magnitude and direction, by the diagonal $O C$ of the parallelogram.

Fig. 2.2 Principle of resolution.

Let $O X$ be the given direction, in which the forees are to be resolved. Now draw $A L, B M$, and $O N$ perpendiculara from the points A, B and C on $O X$. Similarly, draw $A T$ perpendicular from the point A on $C N$.

In the two triangles $O B M$ and $A O T$, the two sides $O B$ and $A O$ are parallel and equal in magnitude. Moreover, the two sides $O M$ and $A T$ are also parallel.

$$
\therefore \quad Q M-A T=L N
$$

Now from the geometry of the figure, wo find that

$$
O N=O L+L N=O L+O M \quad \ldots(\because \quad L N=O M)
$$

But $O N$ is the resolved part of the resultant $R, O L$ is the resolved part of the force P, and $O M$ is the resolved part of the force Q.

Hence resolved part of R along $O X$
$=$ Resolved part of P along $O X$ + Resolved part of Q along $O X$
Note: We have considered, for the sake of simplicity only, the two forees P snd Q. But this prineiple may be extended for any number of fomes.

2.14. Method of Resolution for the Resultant Force

The resultant force, of a given system of forees, may be found out by the method of resolution as disoussed below :

1. Reaolve all the forces vertically and find the algebraie sum of all the vertical components (i.e., $\mathbf{\Sigma V}$).
2. Resolve all the forces horizontally and find the algebraic sume of all the horizontal components (i.e., ΣH).
3. The resultant R of the given forces will be given by the equation :

$$
\boldsymbol{R}=\sqrt{(\Sigma \bar{V})^{2}+(\Sigma H)^{2}}
$$

4. The resultant force will be inolined at an angle θ, with the horizontal, such that

$$
\tan \theta=\frac{\Sigma V}{\Sigma H}
$$

Note: The value of tho angle θ will vary depending upon the values of ΣV and ΣH as dincussed below t

1. When ΣV^{\prime} is +ve, the resultant makea an angle betwean 0° and 180°. But whon ΣV is -ve, the reeultent makes an angle between 180° and 360°.
2. When ΣH is + ve, the rogultant makes an angle botween 0° and 90° and 270° to 360°. But when ΣH is -ve, the resultant makes an angle between 90° to 270°.
Example 2.3. A triangle $A B C$ has its sides $A B=40 \mathrm{~mm}$ along positive x-axis and sides $B C=30$ along positive y-axis. Three forces of $40 \mathrm{kgf}, 50 \mathrm{kgf}$ and 30 kgf act along the sides $A B, B C$ and $C A$ respectively. Determine the resullant of such a system of forces.
(Osmania University, 1985)

Solution.

The system of the given forces is shown in Fig. 2-3. From the geometry of the figure, we find that the triangle $A B C$ is a right angled triangle in which the ${ }^{*}$ gide $A O=50 \mathrm{~mm}$. Moreover,
and

$$
\begin{aligned}
& \sin \theta=\frac{30}{50}=0.6 \\
& \cos \theta=\frac{40}{50}-0.8
\end{aligned}
$$

Resolving all the forces horizon-

Fig. ${ }^{2}$-3 tally (i.e. along $A B$)

$$
\begin{equation*}
\Sigma H=40-30 \cos \theta=40-30 \times 0.8=16 \mathrm{kgf} \tag{i}
\end{equation*}
$$

and now resolving all the forces vertically (i.e. slong $B C$),

$$
\begin{equation*}
\Sigma V=50-30 \operatorname{ain} \theta=50-30 \times 0.6=32 \mathrm{kgf} \tag{ii}
\end{equation*}
$$

We know that the magnitude of the resultant foree,

$$
\begin{aligned}
R & \left.=\sqrt{(\Sigma H)^{2}+(\Sigma V}\right)^{2}=\sqrt{(16)^{2}+(32)^{2}} \quad \mathrm{kgf} \\
& =35 \cdot 8 \text { kgf Ans. }
\end{aligned}
$$

Example 2.4. The forces $20 \mathrm{~N}, 30 \mathrm{~N}, 40 \mathrm{~N}, 50 \mathrm{~N}$ and 60 N are acting on one of the angular points of a regular hexagon, tovoards the other five angular points, taken in order. Find the magnifude and direction of the resultant force.
(Cambridge Univeraity)

Solution.

The system of the given forces is shown in Fig. 2.4. Magnitude of the resulant force

Resolving all the forees horizontally (i.e., along $A B$),

$$
\begin{align*}
& \Sigma \boldsymbol{\Sigma}= 20 \cos 0^{\circ}+30 \cos 30^{\circ} \\
&+40 \cos 60^{\circ}+50 \cos 90^{\circ} \\
&+60 \cos 120^{\circ} \mathrm{N} \\
&=(20 \times 1) \\
&+(30 \times 0.866) \\
&+(40 \times 0.5)+(50 \times 0) \\
&+60(-0.5) \mathrm{N} \tag{i}\\
&= 36.0 \mathrm{~N}
\end{align*}
$$

Fig. 2-4
and now resolving the all forces vertically (i.e. at right angles to $\boldsymbol{A B}$)

$$
\begin{align*}
\Sigma V= & 20 \sin 0^{\circ}+30 \sin 30^{\circ}+40 \sin 60^{\circ} \\
& +50 \sin 90^{\circ}+60 \sin 120^{\circ} \mathrm{N} \\
= & (20 \times 0)+(30+(0.5)+(40 \times 0.866) \\
& +(50 \times 1)+(60 \times 0.866) \mathrm{N} \\
= & 151.6 \mathrm{~N} \tag{ii}
\end{align*}
$$

We know that magnitude of the resulant force,

$$
\begin{aligned}
R & =\sqrt{(\Sigma H)^{2}+(\Sigma V)^{2}}=\sqrt{(36 \cdot 0)^{2}+(151 \cdot 6)^{2}} \mathrm{~N} \\
& =155 \cdot 8 \mathrm{~N} \text { Ans. }
\end{aligned}
$$

Direction of the resultant force
Let $\quad \theta=$ Angle, which the resultant makes with the horizontal (i.e., AB).
$\therefore \quad \tan \theta=\frac{\Sigma V}{\Sigma H}=\frac{151 \cdot 6}{36.0}=4.211$
or
$\theta=76^{\circ} 39^{\prime}$ Ans.

Rewnltant Forcen

 ously on sparticle, it is posaible to find oat a kizngle force whinb oould replace them i.s. which would pfoduce the same efteet as produeed by all the given foroes. This single force is called resultumi force, and the Eiven forees $P, Q, R \ldots \ldots$, ete. are called aomponent forces.

Clomposition of Forcer
The prosems of finding out the reasltant force of a number of giren foreee is called oomgogition of forces of oompounding of forces.

Methods for the Rewultant Farce
Thengh there are many mothocls for finding out the ressitant forve of a number of given forces, yet the following are important from the suhjeet point of viow :

1. Analytinal method, 2. Graphieal method,

Analytical Method for Resultant Foree
The reaultant foroes, of a given nyntem of forees, may be found out analytionily by the following methodu :

1. Parsllelogram law of forees, g. Method of rveslation.

Parallelogrinna Law of Foxcen

It statea "If two foroes, acting mimultancouslly an a particle, be represented in magnitude and dircotion by the two adjacent sidee of a parallelogram: their reavilant may be represented in magnilude of a direction by the diagonal of ehe payrallelogram. which pasper through cheir point of interesction." Mathematically, resultant forea,

$$
R-\sqrt{P^{2}+Q^{*}+-2 P Q} \quad \cos \theta
$$

and

$$
\tan \alpha=\frac{Q \sin \theta}{P+Q \cos \theta}
$$

where P and Q - Foreen whone resultant is required to be found

$$
\theta \text { - Angle between the foroes } P \text { and } Q \text {, and }
$$

$$
\alpha \text { - Angle which the reaultant force makes with one }
$$ of the forces (say P).

Note. If the wagle (α) whioh the reoultant foroe maket with the other
foree Q. shen

$$
\tan \alpha-\frac{P_{\min } \theta}{Q+P^{2000} \theta}
$$

Cor.

1. If - 0 C.e.. when the forces ant along the maxne line, then

$$
R=P+Q \quad \quad \ldots\left(\text { *ince cos } \theta^{n}-I\right)
$$

2. Tf a - 90° i.e., when the forven net nt right angte; then

$$
R-\sqrt{P^{P}+Q x}
$$

$$
\cdots\left(\text { eince cos } 90^{\circ}=\sigma_{)}\right.
$$

3. If θ - 180° b.e., when the forgen not along the sames wtraight line but in epprarite direction thent

In thia came, the remultent foree will aet in the dirnetion of the greater
fored.
4. If the two forcen aro equal i.e. when $P=Q$
then $\quad R-\sqrt{P^{2}+P^{2}+2 P^{2} \cos \theta}-\sqrt{0^{2}(1+\cos \theta)}$

$$
-\sqrt{2 p^{2 \pi} \times 2 \cos n^{2} \frac{\theta}{2}} \quad \cdots\left(\because \quad 1+\cos \theta-3 \cos ^{2} \frac{\theta}{2}\right)
$$

$$
=\sqrt{4 P B \operatorname{con}^{2} \frac{\theta}{2}}-\frac{2 F}{2} \text { on } \frac{\theta}{2}
$$

Example 2.1. Two forces act at an angle of 120°. The bigger foree is of $40 N$ and the resultant is perpendicular to the smaller one. Find the amaller foroe.

Solution

$$
\text { Given } \begin{aligned}
P & =40 \mathrm{~N} \\
\angle A O Q & =120 \\
\therefore B O O & =90^{\circ} \\
\therefore \quad \angle A O R & =120^{\circ}-90^{\circ} \\
\alpha & =30^{\circ}
\end{aligned}
$$

Let $-Q=$ Bmanller foroe.

Fig- 2.1

We know that

$$
\begin{aligned}
\tan \alpha & =\frac{Q \sin \theta}{P+Q \cos \theta} \\
\tan 30^{\circ} & =\frac{Q \sin 120^{\circ}}{40+Q \cos 120^{\circ}}=\frac{Q \sin 60^{\circ}}{40+Q\left(-\cos 60^{\circ}\right)}, \\
0.577 & =\frac{Q \times 0.866}{40-Q \times 0.5}=\frac{0.866 Q}{40-0.5 Q} \\
40-0.5 Q & =\frac{0.866 Q}{0.577}=1.5 Q \\
2 Q & =40 \text { or } Q=20 \mathrm{~N} \text {-Ans. }
\end{aligned}
$$

- Example 2.2. Find the magnitude of the two forces, such that if they act at right angles, their resultant is $\sqrt{10} \mathrm{~N}$. But if they act at 60°, their resultant is $\sqrt{13} \mathrm{~N}$.
(Bihar University, 1986)

Solution

Let

$$
P \text { and } Q=\text { Two given forces. }
$$

First of all, consider the two forces acting at right angles. We know that when the angle between the two given forces is 90°, then the resultant force (R)
or

$$
\begin{aligned}
\sqrt{10} & =\sqrt{P^{2}+Q^{2}} \\
10 & =P^{2}+Q^{2}
\end{aligned}
$$

...(Squaring both aides)

Similarly, when the angle between the two forces is 60°, then the resultant force (R)

$$
\begin{aligned}
\sqrt{18} & =\sqrt{P^{2}+Q^{2}+2 P Q \cos 60^{\circ}} \\
\therefore \quad 13 & =P^{2}+Q^{2}+2 P Q \times 0 \cdot 5 \quad \ldots \text { Squaring both sides) } \\
& =10+P Q \quad \ldots\left(\text { Substituting } P^{2}+Q^{2}=10\right) \\
P Q & =13-10=3
\end{aligned}
$$

or
We know that $(P+Q)^{2}=P^{2}+Q^{2}+2 P Q=10+6=16$

$$
\begin{array}{rlrl}
\therefore & P+Q & =\sqrt{ } 16=4 \\
& \text { Similarly } & & (P-Q)^{2}
\end{array}=P^{2}+Q^{3}-2 P Q=10-6=4=4
$$

Solving equations (i) and (ii).

$$
P=3 \mathrm{~N} \text { and } Q=1 \mathrm{~N} \text { Ans. }
$$

General Laws for the Resultant Force

The resultant foree, of a given system of forces, may also be found out by the following general laws :

1. Triangle law of forces. 2. Polygon law of forces.

Triangle Law of Forces

It states, "If two forces acting simultaneously on a particle, be represented in magnitude and direction by the two sides of a triangle, taken in orders; their resultant may be represented in magnitude and direction by the third side of the triangle, talien in opposite order."

Polygon Law of Forces

It is an extension of Triangle Law of Forces for more than two forces, which states, "If a number of forces acting simullaneously on a particle, be represented in magnitude and direction, by the sides of a polygon taken in order; then the resultant of all these forces may be represented, in magnitude and direction, by the closing side of the polygon, taken in opposite order."

Graphical (Vector) Method for the Resultant Force

This is another name given to the method of finding out, graphically, magnitude and direction of the resultant force by the polygon law of forces. It is done as discussed below :

1. Construction of space diagram (position diagram). It means the construction of a diagram showing the various forces (or loads) alongwith their magnitude and lines of action.
2. Use of Bow's notations. All the forces in the space diagram are named by using the Bow's notations. It is a convenient method in which every force (or load) is named by two capital letters, placed on its either'side in the space diagram.
3. Construction of vector diagram (force diagram). It means the construction of a diagram starting from a convenient point and then go on adding all the forces vectorially one by one (keeping in view the directions of all the forces) to some suitable scale.
Now the closing side of the polygon, taken in opposite order, will give the magnitude of the resultant force (to the scale) and its direction.

Example 2.7. A particle is acted upon by three forces equal to $5 \mathrm{~N}, 10 \mathrm{~N}$ and 13 N , along the three sides of an equilateral triangle, taken in order. Pind graphically the magnitude and direction of the resultant forces.
(Madurai University, 1985)

Solution.

First of all, draw the space diagram for the given system of forces (acting along the sides of an equilateral triangle) and name the forees according to Bow's notations ss shown in Fig. $2 \cdot 7$ (a). The 5 N force is named es $A B, 10 \mathrm{~N}$ foroe as $B C$ and 13 N force as $C D$.

Now draw the veotor diagram for the given system of forces as shown in Fig. 2.7 (b) and as discussed below :

1. Select some suitable point a and draw $a b$ equal to 5 N to some suitable scale and parallel to the force $A B$ of the space diagram.
2. Through b, draw bc equal to 10 N to the scale and parallel to the force $B C$ of the space diagram.
3. Similarly, through c, draw $c d$ equal to 13 N to the acale and parallel to the force $O D$ of the space dingiam.
4. Join $a d$, which gives the magnitude as well as direction of the resultant force.
5. By msasurement, we find the magnitude of the resultant force is equal to 7 N and acting at an angle of 200° with $a b$. Ans.
Example 2.8. The following forces act at a point :
(i) 20 N inclined at 30° towards North of East.
(ii) 25 N towards North.
(iii) 30 N towards North West, and
(iv) 35 N inclined at 40° towards South of West.

Find the magnitude and direction of the resultant force.
(Jiwaji Universily, 1986)

*Solution

(d) Apace diagram

(c) Vector diagtram

Fig. 2-8
First of all, draw the space diagram for the given ayeiva of forces (acting at point O) and name the forces according to $3 \mathrm{C} \mathrm{w}^{\prime} \mathrm{B}$ notations as shown in Fig. $2 \cdot 8(a)$. The 20 N force is named as Fh? the 25 N force as $Q R, 30 \mathrm{~N}$ force as $R S$ and 35 N foroe as $S T$.

Now draw the vector diagram for the given system of forces as shown in Fig. $2.8(b)$ and as diacussed below :

1. Select some suitable point p and draw $p q$ equal to 20 N to sorne suitable scale and paraliel to the force $P Q$.
2. Through q, draw q r equal to 25 N to the acale and parallel to the force $Q R$ of the spece diagram.
3. Now through r, draw $r s$ equal to 30 N to the soale snd paralled to the force $R S$ of the space diagram.
4. Similarly, through s, draw st equal to 35 N to the seale and parallel to the force $S T$ of the space diagrem.
5. Join pt, which gives the magnitude as well as diroction of the resultant force.
6. By measurement, we find that the magnitude of the resuitant force is equal to $45 \cdot 6 \mathrm{~N}$ and acting at an angle of 132° with the horizontal i.e. East-West line. Ans,

2.19. Ralation Between Mass and Weiglst

(The term 'mass' is defined as the matter contsined in a body,) wheress the term ' $w e i g h t$ ' is defined as the force with which a body is sttracted towards the centre of the earth From the sbove mentioned two definitions, it is clear that the units of mass are kg, tonnes etc) whereas the units of (weight are N, kN and kgf etc.)

It will be interesting to know that there is an important relation between the mass and weight of a body, whioh will be discussed in detail in chapter 23 of this book. But for the time being, it may be taken as

$$
\begin{equation*}
W R=\operatorname{mon} g=9.8 \mathrm{~m} \tag{g=9.8}
\end{equation*}
$$

where $P=$ Weight of the body in newions,
: m - Mgss of the body in kg , and

- 5 . Gravitational acceleration whose value is taken as
$7-8 \mathrm{~m} / \mathrm{sec}^{3}$ Reample 2.9. A machine shaft BC 1.5 m long and of mass 100 kg is supporled by two ropes $A B$ and $C D$ as shoton in Fig. 2.9 given below :

Fig. 2.0
Calculate the tentions F_{1} and F_{a} in the rope $A B$ and $O D$.
(London University)

Solution. Given : Mass of shaft $=100 \mathrm{~kg}$
We know that weight of the mass

$$
=m \cdot g=100 \times 9.8=980 \mathrm{~N}
$$

Resolving the forces horizontally (i.e. along $B C$)and equating the same,

$$
\begin{align*}
& F_{1} \cos 60^{\circ}=F_{2} \cos 45^{\circ} \\
& \therefore \quad F_{1}=\frac{\cos 45^{\circ}}{\cos 60^{\circ}} \times F_{2}=\frac{0.707}{0.5} \times F_{2}=1.414 F_{2} \tag{i}
\end{align*}
$$

and now resolving the forces vertically,

$$
F_{1} \sin 60^{\circ}+F_{2} \sin 45^{\circ}=980
$$

$\left(1.414 F_{1}\right) 0.866+F_{2} \times 0.707=980$

$$
1.93 F_{2}=980
$$

$$
\therefore \quad F_{\mathrm{z}}=980 / 1 \cdot 93=507.8 \mathrm{~N} \text { Ans. }
$$

and

$$
F_{1}=1.414 \times 507.8=718 \mathrm{~N} \text { Ans. }
$$

Moment of a Force

It is the turning effect produced by a force, on the body, on which it acts. The moment of a force is equal to the product of the force and the perpendicular distance of the point, about which the moment is required, and the line of action of the force. Mathematically, moment,

$$
M=P \times l
$$

where
$P=$ Force acting on the body, and
$l=$ Perpendicular distance between the point. about which the moment is required and the line of action of the force.

Graphical Representation of Moment

Consider a force P represented, in magnitude and direction, by the line $A B$. Let O be a point, about which the moment of this force is required to be found out, as shownereve in Fig. 3-1.

From O, draw $O C$ perpendicular to $A B$. Join $O A$ and $O B$.

Now moment of the force P about O

$$
=P \times O \dot{C}=A B \times O C
$$

But $A B \times O C$ is equal to twice the area of the triangle $A B O$.

Thus the moment of a force, about

Fig. 3.1
Representation of moment any point, is geometrically equal to twice the area of the triangle, whose base is the line representing the foree and whose vertex is the point, about which the moment is taken.

Units of Moment

Since the moment, of a force, is the product of force and distance, therefore the units of the moment will depend upon the units of force and distance. Thus, if the force is in Newton and the distance is in metres, therefore the units of moment will be Newtonmetre (briefly written as N-m). Similarly, the units of moment may be $\mathrm{kN}-\mathrm{m}$ (i.e. $\mathrm{kN} \times \mathrm{m}$), $\mathrm{N}-\mathrm{mm}$ (i.e. $\mathrm{N} \times \mathrm{mm}$) $\mathrm{k} \mathrm{ff}-\mathrm{m}(\mathrm{kgf} \times \mathrm{m})$ ctc

Types of Moments

Broadly speaking, the moments are of the following two types :

1. Clockwise moments. 2. Anticlockwise moments.

Clockwise Moment

(a) Clockwise moments

(b) Anticlockwise moments

Fig. $3 \cdot 2$
It is the moment of a foree, whose effect is to turn or rotate the body, in the same direction in which the hands of a clock move, as shown in Fig. $3 \cdot 2(a)$.

Anticlockwise Moment

It is the moment of a force, whose effect is to turn or rotate the bady, in the opposite direction in which the hands of a clock move, as shown in Fig. $3 \cdot 2$ (b).

Note. The general convention in 4 take elonkwise moment as posaitive aud ajgholoekwise moment as negative.

Varignon's Principle of Moments (or Law of Moments)
It states, "If a number of coplanar forces are acting simultaneously on a particle, the algebraic sum of the moments of all the forces about any point is equal to the moment of their resultant force about the same point."

Rxample 3.1. A force of 15 N is applied perpendicular to the edge of a door 0.8 m wide as shown in Fig. $3.4(\mathrm{a})$. Find the moment of the force about the hinge.

(a)

(b)

Fig. 8.4
If this force is applied at an angle of 60° to the edge of the same door, as shown in Fig. 3•4(b), find the moment of this force.
(Gujarat University, 1984)
Solution. Given : $P=15 \mathrm{~N} ; l=0.8 \mathrm{~m}$
Moment when the force acts perpendicular to the door
We know that the moment of the force about the hinge,

$$
=P \times l=15 \times 0.8=12.0 \mathrm{~N}-\mathrm{m}
$$

Ans.
Moment when the force acts at an angle of 60° to the door
This part of the example may be solved either by finding out the perpendicular distance between the hinge and the line of action of the force as shown in Fig. $3.5(a)$ or by finding out the vertical component of the force as shown in Fig. $3 \cdot 4$ (b).

From the geometry of Fig. 3.5 (a), we find that the perpendicular distance between the line of action of the force and hinge,

$$
\begin{aligned}
O O & =O B \sin 60^{\circ} & =0.8 \times 0.866=0.693 \mathrm{~m} \\
\therefore \quad \text { Moment } & =15 \times 0.693 & =10.4 \mathrm{~N} \quad \text { Ans. }
\end{aligned}
$$

In the second case, we know that the vertical component of the force

$$
\begin{aligned}
& =15 \sin 60^{\circ}
\end{aligned}=15 \times 0.866=13.0 \mathrm{~N},
$$

Example 3.2. A uniform plank ABC of weight 30 N and 2 m tong is supported af one end A and at a point $B 1 \cdot 4 \mathrm{~m}$ from A as alown in Fig. 3.6.

Fig. 3-6
Find the maximum weight W, that can be placed at C, so that the plank does not topple.
(Patna University, 1986)
Solutiom. Given: $W=30 \mathrm{~N}$; Length $A B C=2 \mathrm{~m}$
We know that weight of the plank (30 N) will act at its midpoint, as it is of uniform section. This point is at a distance of 1 m from A or 0.4 m from B.

We also know that if the plank is not to topple, then the reaction at A should be zero for the maximum weight at C. Now taking moments about B and equating the same,

Law of moments

When an object is balanced (in equilibrium) the sum of the clockwise moments is equal to the sum of the anticlockwise moments.

Force $1 \times$ its distance from pivot $=$ Force $2 \times$ distance from the pivot

$$
\mathrm{F}_{1} \mathrm{~d}_{1}=\mathrm{F}_{2} \mathrm{~d}_{2}
$$

COUPLE

Definition - Couple, in mechanics, pair of equal parallel forces that are opposite in direction. The only effect of a couple is to produce or prevent the turning of a body.

- The turning effect, or moment, of a couple is measured by the product of the magnitude of either force and the perpendicular distance between the action lines of the forces.

Arm of a Cowple

The perpendicular distance (a), between the lines of action of the two oqual and opposite parallel forces, in known as arm of the couple as shown in Fig. 4-12.

Moment of a Couple
The moment of a couple is the product of the foree (i.e. one of the forces of the two equal and oppoaite parallei foroes) and the arm of the couple. Mathematically :

Moment of a couple $-\boldsymbol{P} \times \boldsymbol{a}$ where $\quad P=$ Force, and

$$
a=\text { Arm of the couple. }
$$

Classification of Couples

The couples may be, broadly, alasaified into the following two eategories, depending upon their direction, in which the couple tenda to rotate the body, on which they act :

1. Clookwise couple, and 2. Anticlockwise couplo.

Clockwise Couple

(a) Clookwise couple

(b) Antielociewino eouple

Fig. 4-13
A couple, whose tendency is to rotate the body, on which it acts, in a clockwise direction, is known as a clockwise couple as shown in Fig. 4-13 (a). Such a couple is also called positive couple.

Anticlockwise Couple
A couple, whose tendeney is to rotate the body, on which it acts, in an anticlockwise direction, is known as an antiolookwise oouple ss nhown in Fig. 4-13 (b). Such a couple is also called a negative couple.

Characteristics of á Couple
A oouple (whether clockwise or anticlockwise) has the following characteristica :

1. The algebruic sum of the forvers, conntituting the couple,
in zros.
2. The algebraic sum of the moments of the forces, constituting the couple, about any point is the same, and equal to the moment of the couple itself.
3. A couple cannot be balanced by a single force, but can be balanced only by a couple ; but of opposite sense.
4. Any number of coplaner couples can be reduced to a single couple, whose magnitude will be equal to the algebraic sum of the moments of all the couples.

Example 46. A square $A B C D$ has forces acting along its sides as shown in Fig. 4.14. Find the values of P and Q, if the system reduces to a couple. Also find magnituide of the couple, if the side of the square is 1 m .
(Allahabad University, 1985;
Solution. Given : Length of square $=1 \mathrm{~m}$

Values of P and Q

(f) We know that if the system reduces to tant foree in horizontal and vertical directions is zero. Therefore resolving the forces horizontally,

$$
100-100 \cos 45^{\circ}-P=0
$$

$$
\begin{aligned}
\therefore \quad P & =100-100 \cos 45^{\circ} \mathrm{N} \\
& =100-100 \times 0.70 \mathrm{~N} \\
& =29.3 \mathrm{~N} \text { Ans. }
\end{aligned}
$$

Now resolving the forces vertically,

Fig. $4 \cdot 14$

$$
\begin{aligned}
& 200-100 \sin 45^{6}-Q=0 \\
\therefore \quad & Q=200-100 \times 0.707=129.3 \mathrm{~N} \text { Ans. }
\end{aligned}
$$

Magnitude of the Couple

We know that moment of the couple is equal to the algebraic sum of the moments about any corner. Therefore moment of the couple (taking moments about A)

$$
\begin{aligned}
& =(-200 \times 1)+(-P \times 1)=-200-29 \cdot 3 \times 1 \mathrm{~N} \cdot \mathrm{~m} \\
& =-229.3 \mathrm{~N} \cdot \mathrm{~m} \text { Ans. } \quad \ldots \text { (Minns aign due to antiolookwinn) }
\end{aligned}
$$

CHAPTFR-O2 EQUILIBRIUM OFFFORCES
2.1 If a system of forces acting simultaneously on a body produces no change in the stacte of rest or the state of motion of the body, the system of forces is said to be in equillm.

A system of forces can be in equill under two situations.
L* of the resultant of a number of forcesucting at a point is zero.
\rightarrow When the resultant of ar system of forces applied on wparticle has a non-zerco value, then the particle will remain at rest by applying a force equal in magnitude bub opposite in divan of the resultant.

Principles of Equilibrium
Tue - force principle
When a body is acted upon by tues, equal coporite collinear forces, the resultant force is wee. The system of forces os laid to be on equilibrium.

Three Force principle
Three non-parallel forces will be in equili " when they lie in one plane, intersect of one point and there free vestoral form a closed triangle.
2.2 Lang's Theorem
9) three coplannere concurrent forces are acting on a body hast in equilibrium, then each forcer is prepertition to the cine angle between other toe fores and the canst. of properctionalily is the same.

proof
Let force P, Q, R acting at point O.

Since $P, 2, R$ are in equilibrium the triangle of for cues should be accord ane. (vector diagram)

Draw ∞ line $A B \|$ to forceR. Fromerd 4 drew a live 1 to 2 . name of $A C$. From ' C ' drew aline 1 to p. it well intersect the line $A B_{3}$ at B.

$$
\begin{aligned}
& \angle A=\pi-\alpha \\
& \angle B=\pi-\beta \\
& \angle C=\pi-V
\end{aligned}
$$

Applying sine rule to the $\triangle A B C$.

$$
\begin{aligned}
& \frac{P}{\sin (\pi-\alpha)}=\frac{2}{\sin (\pi-\beta)}=\frac{R}{\sin (\pi-n)} \\
\Rightarrow & \frac{\beta}{\sin \alpha}=\frac{Q}{\sin \beta}=\frac{k}{\sin n}
\end{aligned}
$$

Q) An electric lamp weighing 20 N is suspended from point C. supported by 2 wire $A C$ \& BC. The point A, B are at same level. $A C$ makes an angle 60° and BC makes 45° to horisental as sheen is fig. Determine the tension in the string $A C \& B C$.

30, ω at $c=20$
$F_{A C}=$ tension in $A C$

$$
T B C=\quad \because \quad \| B C .
$$

$$
\$ 0 \frac{\beta}{\sin \alpha}=\frac{\theta}{\sin \beta}=\frac{R}{\sin \gamma}
$$

$$
\Rightarrow \frac{20}{\sin F 5^{\circ}}=\frac{T_{B} C}{\sin 150^{\circ}}=\frac{T_{A C}}{\sin 135^{\circ}}
$$

$$
T_{A C}=\frac{20 \times \sin 135}{\sin 75}=\frac{14.14}{\sin 75}=14.95 \mathrm{Ay} \text { \& } \omega=20 \mathrm{~N}
$$

$$
T_{B C}=\frac{20 \times \sin 3 B 0}{\sin 75^{\circ}}=\frac{10}{\sin 75^{\circ}}=\frac{10}{.965}=10.35
$$

Q) Body weighing 10 N is eupponolandad from a foxed point by astreing 55 cm long $\&$ is wept at rest by a hoseisental force, p at a distances of 9 cm from the vertical line drawer through the point of cuspensisn. What are the tension of the string of the value of P ?

00
Lat tension T developed in the strong HB. The point B is in equal ${ }^{(3)}$, wiolere the threes feces $10: T_{A B} \& P$.

$$
\text { Let } \angle A B C=\theta
$$

Applying lamils theorem

$$
\frac{P}{\sin (90+\theta)}=\frac{T_{A 3}}{\sin 90}=\frac{10}{\sin (180-\theta)}
$$

$$
\frac{\beta}{\cos \theta}=\frac{T}{1}=\frac{10}{\sin \theta}
$$

Frown $\triangle A B C$

$$
\begin{aligned}
& A B^{2}=A C^{2}+B C^{2} \\
& \Rightarrow A C^{2}=A B^{2}-B C^{2} \\
& =15^{2}-9^{2} \\
& =225-81 \\
& \Delta C=\sqrt{144} \\
& \text { - } 12 a A A y \\
& \sin \theta=\frac{A C}{A B}=\frac{12}{15}=0.8 \\
& \cos \theta=\frac{B C}{A B}=\frac{9}{15}=0.6 \\
& \frac{T}{1}=\frac{P}{0.6}=\frac{10}{0.8} \\
& \sin \theta=\mathrm{P} / \mathrm{h} \\
& \cos a=b / h \\
& \tan =\frac{p}{b} \\
& \Rightarrow \quad P=\frac{10 \times 06}{0.8}=\frac{60}{8}=75 \mathrm{NAn} \\
& \Rightarrow \quad T=\frac{10}{0.8}=12.5 \mathrm{NA}
\end{aligned}
$$

2) A, fine light string $A B C D E$ with one end A fixed, has weights $w_{1} \& w_{2}$ attached to it at B and C. The string passes fecund an'smooth' pulley D careen Wt bon at free e end E as shown in fig, if the portion of eq. ${ }^{m}, B C$ is horiental with $A B \& C D$ values an angle $150^{\circ} \& 120^{\circ}$ with $B C$. Rind
\therefore :.) Tension in portion $A B, B C, D E$.
ii) Magnitude of $w_{1} \& w_{2}$

TAB -tersion in $A B$

$$
\begin{aligned}
& T_{B C}=\because B C \\
& T C D=\Rightarrow C D
\end{aligned}
$$

poley is sinooth no friction $T_{C D}=T_{D E}$

$$
T_{D E}=60 \mathrm{~N}=T_{C D}
$$

Apply lamils thesrem at C \& B.
ii)

$$
\begin{aligned}
\therefore \frac{T_{A B}}{\sin 90} & =\frac{T_{B C}}{\sin 120}=\frac{T_{B}}{\sin 150} \\
\Rightarrow T_{A B} C & =\frac{T_{B C} \times \sin 90}{\sin 120}=\frac{30}{\sin 120} \\
& =\frac{34.63 \mathrm{~N}}{} \\
\Rightarrow D_{1}=\frac{T_{B C} \times \operatorname{con} 150}{\sin 120} & =\frac{30 \times 5}{866} \\
& =17.32 \mathrm{~N}
\end{aligned}
$$

i)

$$
\begin{aligned}
& \frac{T_{C D}}{\sin 90^{\circ}}=\frac{T_{B C}}{\sin 150}=\frac{\omega_{2}}{\sin 120^{\circ}} \\
& \Rightarrow T_{B C}=\frac{T_{C D} \times \sin 50}{\sin 90}=\frac{60 \times .5}{1}=30 \mathrm{~N} \\
& \Rightarrow \omega_{2}=\frac{T_{C P} \times \sin 120}{\sin 90^{\circ}}=51.96 \mathrm{~N}
\end{aligned}
$$

2) Tue equal and heany/ spheres of 40 mm readies ace ${ }^{2}$ in equilem with in a cyp of radius 120 mm . Shail that the rean betn the cup sonei sphere is druble of that bet" the two spheres is shewen in the

$$
\begin{aligned}
& \frac{R}{\sin 90^{\circ}}=\frac{\omega}{\sin 120}=\frac{P}{\sin 150^{\circ}} \\
\Rightarrow & R=\frac{\omega}{\sqrt{3 / 2}}=\frac{P}{1 / 2} \\
\Rightarrow & R=\frac{P}{1 / 2} \\
\Rightarrow & R=2 P
\end{aligned}
$$

2
2) A wiferem wheel 600 mm dia veighing 5 kN rusb aganst a regid ractangulare bloele of insomm heig'
$2 \frac{2 n / 5}{3}$ as shoven in the fiy. Dind the mine ${ }^{m}$ forcee
(v) reop. to turen the whed oven the corenen A \& zot find the rener ${ }^{2}$ on the bloce.

$$
\begin{aligned}
\Rightarrow P & =4330 \mathrm{~N}=4.33 \mathrm{kN} \\
S_{A} & =2500 \mathrm{~N} \\
& =2.5 \mathrm{kal}
\end{aligned}
$$

\rightarrow
Two spheres with conter, A\& B, bying
 in oquil', in cup with cuter' σ, Let the 2 splese centoct at it C. and sphare A hith $\operatorname{cup} D 2$ spheres with cap E.

$$
\ell \rightarrow \text { rean at } D \& E
$$

$P \rightarrow$ renat C.
frem yeoreting. $O D=120 \mathrm{~mm} \quad A D=40 \mathrm{~mm}$ so $A O=120-40$ rimilacly $O B=80, A B=A C+C B$

$$
=40+40=80
$$

$O A B$ becomes equilateral \triangle.

$$
\begin{aligned}
& \frac{R}{\sin 90}=\frac{\omega}{\sin 30}=\frac{1}{\sin 150^{\circ}} \\
& \Rightarrow R=\frac{1}{13 / 2}=\frac{9}{1 / 2} \\
& \Rightarrow R=P / 1 / 2 \\
& \Rightarrow R=2 P
\end{aligned}
$$

2) A smooth circulars cylinder of readies 1.5 meter os laying in triangular grease, one side of which makes 15° angle \& then 40° angle, with horizental. Find the reearfians at the surface of content. of there in no frictions s the cylinder weighs 100 N .

$$
\begin{aligned}
\frac{R_{A}}{\sin (180-40)} & =\frac{R_{B}}{\sin (180-15)}=\frac{100}{\sin \left(15+45^{\prime}\right)} \\
R_{A} & =78.54 \\
R_{B} & =31.6 \mathrm{~N}
\end{aligned}
$$

2) A string, $A B C D$ attached to fired points A, D has two equal vecighs of 1000 N attached to BIC . The weight ref with this portions $A B \& C D$ inclined angle as shown in fog.

Find the tension in $A B, B C \& C D$

S015/ Free body dingriam.

$$
\begin{aligned}
& \frac{T_{A B}}{\sin 60^{\circ}}=\frac{T_{B C}}{\sin (180-30)}=\frac{1000}{\sin 150^{\circ}} \\
& \Rightarrow T_{A B}=1732 \mathrm{~N} \\
& \Rightarrow T_{B C}=1000 \mathrm{~N} \\
& \frac{T_{B C}}{\circ}=\frac{T_{B C}}{\sin 120^{\circ}}=\frac{T_{C D}}{\sin 120^{\circ}}=\frac{1000^{\circ}}{\sin 120^{\circ}} \\
& T_{B C} / T_{120^{\circ}}^{\circ} / 120
\end{aligned} \quad T_{C D}=1000 \mathrm{~N}=A M 2 .
$$

8) Two identical rollers each of weight $2=445 \mathrm{~N}$ are Supported by an inclined plane and a vertical wall as shown in the fig. A summing smooth surface, Pied the reactions induced at po pt A, B, C
$901 ?$

$$
\begin{aligned}
& \frac{R_{a}}{\sin 120}=\frac{s}{\sin 150}=\frac{445}{\sin 90^{\circ}} \\
& \Rightarrow R_{\text {Na }}=385.38 \mathrm{~N} \quad S=225.5 \mathrm{~N}
\end{aligned}
$$

Pesolving vertically

$$
\begin{gathered}
\& y=0 \\
R b \cos 30=445+s \sin 30^{\circ}
\end{gathered}
$$

$$
\Rightarrow \quad R_{b}=69{ }^{2}+301
$$

Roolving horizentally

$$
\begin{aligned}
& { }^{2} d
\end{aligned}=0 \quad \begin{aligned}
& R b \sin 30^{\circ}+S \cos 30^{\circ}=R_{c} \\
\Rightarrow \quad & R_{c}=(, N
\end{aligned}
$$

s.1 Diren a bedy stides or tuends to stide ever arothere lurfoce, an oppoing fercce; ealled as forcer of friction. It acts tangent to the surface and oppoxiter to the dircuction the bady is mowing ere fends to move.

\rightarrow static Friction
It is experienced by a bidy when it is at rest ore when the body is tendsto move.

Logiding Fricfion
It is expervienied when a body sliols onere arothere bedy.
\rightarrow Rolling Priction
It is experienced when a body/sells ovare-anothere body.

Limitingtrection
This is the mayimum value of' frictional farce which cornes in to play, when ai bedy, wost begeins to stide were another bedy/s, ienowen as limiting friction.

If the applied fore is less than the limiting friction, the body remains at nest s the friction, is called static friction, which may have any value bets zero to limiting friction.

Angle of friction
Angle of friction is the angle, which the resultant of force of limiting friction is normal reaction makes with the normal rear?

- Let mass m kept on hovizental. pulled by a force p. When the body is sue about to slide a limiting
(A) friction will act on the opposite vide. R be the normal rear of wt. ω.

Let $O C$ is the reensultant bet $n \& F$, makes an angle \& with R.
$\triangle O B C \quad \tan \phi=\frac{B C}{B O}=\frac{F}{R}$
Coefficient of friction
In the ratio of friction to the normal reaction bet' 2 bodies denoted by μ

$$
\mu=\frac{F}{R}=\tan \phi \Rightarrow F=\mu R
$$

Angle of repose
conviden the blows of weight w rusting on an inclined plane which. males an angle θ with horiuntal.
 When θ is very s small the bloch will rest on the plane. If θ ericieases gradually; α stage is reached at which the block will. starts to elide. That angle is called as angle of repose.

$$
\begin{aligned}
& 2 v=0 \\
& R=\omega \cos \theta \\
& \text { tH }=0 \quad F=\omega \sin \theta \text { (0) } \\
& \frac{\text { nf } \sin \theta}{10 \cos \theta}=\frac{F}{R} \\
& \Rightarrow \tan \theta=\frac{F}{R} \\
& \therefore \tan \varphi=\tan \theta \\
& \Rightarrow \varphi=0
\end{aligned}
$$

Angle of friction = Angle of repose.

Laws of friction
\rightarrow Lavs of static friction
\rightarrow The force of friction always act opposite in the direct", of applied force.
\rightarrow The magnitude of forcer of friction is exactly \therefore equal to the applied forcer, which tend to mane the body.
\rightarrow The magnitude of the liming friction bears a cont ratio to normal reaction bet the the surface.

$$
F / R=\text { cons. }
$$

\rightarrow The force of friction is independent of the area of contact beth 2 surface.
\rightarrow The force of friction depend upon the surface roughness.
\rightarrow Laves of Dynamics friction
\rightarrow The force of friction always oct in a direction opposite in which the body is moving.
\rightarrow For moderates speed the form of friction remains cont, but it alecreaises with increase of the speed.
Q) A body of weight 300 N is lying on an rough horizontal plane having a co-efficient of friction 0.3. Find the magnitude of the force, which can move the bedy, While acting at an angle of 25° lith the harizental.

$2 H=0 \Rightarrow P \cos 25^{\circ}=F \Rightarrow F=0.9063 P$
Sि20 $\Rightarrow R=W-P \sin 25^{\circ}$
Nelnow that $F=\mu R$

$$
\begin{aligned}
& \Rightarrow 0.9063 p=r[w-p x \cdot 4226] \\
& \Rightarrow 0.9063 p=0.3[300-4226 p] \\
& \Rightarrow 0.9063 p=90-1268 p \\
& \Rightarrow p=87.1 \mathrm{~N} . \mathrm{ANS}
\end{aligned}
$$

2) A body rusfing on a reangh halined at 30°, to the planc as pull. of 180 N molined at 30°, to the planc to to move it. It weas fuend trat that a push of 220 N inclined at- 30° to the plane joust m the trody determine the wreight of the body and the co-effivient of frietion.
9°
FBD of fig 1

SH 2 O

$$
\begin{align*}
& F_{T}=180 \cos 30^{\circ} \mathrm{N} \\
& S V=0 \\
& R=\omega-180 \sin 36 \\
& \Rightarrow R=10-90 \\
& F_{1}=R R \\
& \Rightarrow 155.88=H(10-90) \tag{1}\\
& 2 V=0
\end{align*}
$$

$$
\begin{aligned}
& 2 V=0 \\
& R=\omega+220 \sin 30 \\
& \Rightarrow R=\omega+110 \\
& F=4 R \\
& \Rightarrow 190.52=\operatorname{re}(\omega+110) \gamma
\end{aligned}
$$

(1)

Adaling equn (1) 2 (2) substroculing
FOD of fig $2=30^{\circ}$

$$
\Rightarrow F_{2}=190.52 \mathrm{~N}
$$

$$
\begin{aligned}
155.88 & =\mu w-90^{\mu} \\
-190.52 & =r \omega+110 \mu \\
+34.64 & =+200 \mu \\
\Rightarrow \mu & =0.1732 \mathrm{Ary}
\end{aligned}
$$

puting nolue of $t h$ is equm (1)
we get $155.88=0.1732(w-90)$

$$
\omega=991.68 \mathrm{~N}
$$

2) if co.effieient-bet" the 2 blockes is 0.3 . Find foceer p req to move the block.

$$
\begin{aligned}
& \omega_{A}=1 k N \\
& \omega_{B}=2 k N T \rightarrow T \sin 30^{\circ} \\
&
\end{aligned}
$$

(vertically)

$$
\begin{align*}
& R_{1}+T \sin 30^{\circ}=1 \mathrm{kal} \tag{1}\\
& \Rightarrow / R O X_{1} \Rightarrow T \sin 30^{\circ}=1-R_{1}{ }^{\circ}
\end{align*}
$$

Horixentally

$$
\begin{align*}
& T \cos 30^{\circ}=F_{1} \\
& \Rightarrow T \cos 30^{\circ}=M R_{1} \tag{1}\\
& \Rightarrow T \cos 30^{\circ}=0.3 R_{1}
\end{align*}
$$

Diviling equ (1) : (2)

$$
\frac{T \sin 30^{\circ}}{T \cos 30^{\circ}}=\frac{1-R_{1}}{0.3 R_{1}} \Rightarrow \tan 30^{\circ}=\frac{1-R_{1}}{0.3 R_{1}}
$$

$$
\begin{aligned}
& \Rightarrow 0.5774=\frac{1-R_{1}}{0.3 R_{1}} \\
& \Rightarrow 0.5774 \times 0.3 R_{1}=1-R_{1} \\
& \Rightarrow 0.173 R,=1-R 1 \\
& \Rightarrow R_{1}=0.85 \mathrm{kN} \\
& f=M R_{1}=0.3 \times 0.85 \\
& =255 \mathrm{kN} \\
& R_{2}=2+R_{1} \\
& =0.85+2=2.85 \mathrm{KN} \\
& f_{2}=r R_{2} \\
& 20.83 \times 2.85=.855 \mathrm{~W} \\
& P=F_{1}+F_{2} \\
& =.255+855 \\
& =1.11 \mathrm{kN}
\end{aligned}
$$

3.2 èpill ${ }^{m}$ of a body in Reugh Inclinudplane

Canidce a bedy layning on a reugh inclined plare. cubsected to force P. as shewen in fig

1. Minionum forcee $(p$,$) which will werp the body in$ equillm when it is sliding dowen weard.

$$
F_{1}=\mu R_{1}
$$

Net herirental ferce.

$$
\begin{align*}
& p_{1}=\omega \sin x-f_{1} \\
& \Rightarrow p_{1}=\omega \sin n-\mu R_{1} \tag{1}\\
& \text { Net vertical ferce. }
\end{align*}
$$

(moving dowenweared)

$$
\begin{equation*}
\omega \cos n=R_{1} \tag{2}
\end{equation*}
$$

nalue of R_{1} in equ (1) we get

$$
\begin{aligned}
p_{1} & =\omega \sin \phi-r(\omega \cos \phi) \\
& =\omega(\sin \phi-\mu \times \cos \phi) \\
& =\omega(\sin \phi-\tan \phi \times \cos \phi) \quad\left(\cdots\left(\sin \phi-\frac{\sin \phi}{\cos \phi} \times \cos \phi\right) \quad(\tan \phi=\right. \\
& =\omega(\tan \phi \\
\Rightarrow p_{1} \cos \phi & =\omega(\operatorname{cin} \phi+\cos \phi-\sin \phi \times \cos \phi) \\
\Rightarrow p_{1} \cos \phi & =\omega \sin (\phi-\phi) \\
\Rightarrow p_{1} & =\frac{\omega \sin \phi(\phi-\phi)}{\cos \phi}
\end{aligned}
$$

2. Mirimum fore (p) wetich will keep the body in equm When moving upulared.

$$
\begin{aligned}
& P_{1}=\omega \sin \alpha_{1}+F_{1} \\
& R_{1}=\omega \cos \alpha
\end{aligned}
$$

$$
\begin{equation*}
p_{1}=\frac{\omega \sin (\alpha+\phi)}{\cos \phi} \tag{1}
\end{equation*}
$$

2) 4 bedy of wet 500 N is lying on a reough plane einclined at an angle of 25°. supponted by horierental force pas chewon in feg Determine P for both upueared \& dovenwerd mofion.

$$
\begin{aligned}
& P_{1}=\frac{\omega \sin (\phi-\varphi)}{\cos \phi}=46.4 \mathrm{~N} \\
& P_{2}=\frac{\omega \sin (\phi+\phi)}{\cos \varphi}=376.2 \mathrm{~N}
\end{aligned}
$$

2) Anclined plane as showen in fig is used to unload abody of ut 400 N . from a hieght 1.2 m . $\mu=0.3$. (S'ate weathere it is necessery to push the body dowen the plane or hold it hoek from silding dowen, "Shat minim ferce is reer. paralled for this purepore) Find P -
soln $\tan x=\frac{1.2}{2.4}=0.5$

$$
\infty=26.5^{\circ}
$$

2 nercmal reare η

$$
\begin{aligned}
R & =\omega \cos \alpha \\
& =450 \times \cos 26.5^{\circ} \\
& =357.9 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& F F \mu R \\
& \quad A \sin \alpha+\mu R=P \\
& \Rightarrow P=400 \times \sin 26.5+0.3 \times 3577.9
\end{aligned}
$$

Equilibrium of x body on a rough inclinzel plane
Subseted to a ferce acting horizentally
Considare a bedy lying on a reugh iodined palane excblected to a force acting horinentally.

1. Ninimum fercue (p_{1}) which will weap the body in equil(${ }^{(n)}$, When it is at dhe perint of stiding dewnwerd.

$$
\begin{aligned}
& F=\mu R, \\
& \Sigma H=0
\end{aligned}
$$

$$
P \cos \alpha+F=\omega \sin \alpha
$$

$$
\Rightarrow p \cos \alpha=W \sin \alpha-F
$$

$$
\Rightarrow P \cos \alpha=\omega \sin \alpha-\mu R-(1)(\because F=\mu R)
$$

$$
\Sigma V=0
$$

$$
\begin{equation*}
R=\omega \cos \alpha+p \sin \alpha \tag{2}
\end{equation*}
$$

puting the value of R in eqpn (1)

$$
\begin{aligned}
& p_{1} \cos \alpha=\omega \sin \alpha-\mu\left(\omega \cos \alpha+p_{1} \sin \alpha\right) . \\
& \Rightarrow p_{1} \cos \alpha+\mu p_{1} \sin \alpha=\omega \sin \phi-\mu \omega \cos \alpha \\
& \Rightarrow p_{1}(\cos \alpha+\mu \sin \alpha)=w(\sin \alpha-\mu \cos \alpha) . \\
& \text { put } \mu=\tan \varphi \\
& \Rightarrow P_{1}=\omega \frac{(\sin \alpha-\mu \cos \alpha)}{\cos \alpha+\mu \sin \alpha} \\
& =\frac{W(\sin \phi-\tan \varphi \cdot \cos \alpha)}{(\cos \alpha+\tan \varphi \cdot \sin \phi)} \\
& =\frac{w\left(\sin \alpha-\frac{\sin \phi}{\cos \phi} \cdot \cos \phi\right)}{\left(\cos \alpha+\frac{\operatorname{sen} \varphi}{\cos \phi} \cdot \sin \phi\right) .} \\
& =\omega\left(\frac{\sin \alpha \cdot \cos \varphi-\sin \phi \cdot \cos \phi}{(\cos \phi \cdot \cos \varphi+\sin \phi \cdot \sin \phi}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P_{1}=\omega \frac{\sin (\alpha-\phi)}{\cos (\alpha-\phi)} \\
& \Rightarrow \alpha_{1}+\cos \alpha ⿻ 日 禸 \\
& \Rightarrow P_{1}=\omega \tan (\alpha-\phi)
\end{aligned}
$$

ai）Masimeem
ii）Fore force（ $P 1$ ），when the brady is moving upulared．

$$
\begin{aligned}
& P_{1}=\omega \frac{\sin (\alpha+\phi)}{\cos (\alpha+\varphi)} \\
& \Rightarrow p_{i}=\omega \tan (\alpha+\varphi)
\end{aligned}
$$

2）Find the total force．ore nc $(2013)^{2}$
Ul？ U ？

$300 \cos 30^{\circ}=R+200 \sin 30^{\circ}$

$$
\begin{aligned}
\Rightarrow R & =300 \cos 30^{\circ}-200 \sin 30^{\circ} \\
& =(
\end{aligned}
$$

2H20．

$$
\begin{aligned}
& 200 \cos 30^{\circ}+300 \sin 30^{\circ}=F \\
& \Rightarrow \mu R=200 \cos 30^{\circ}+300 \sin 30^{\circ}
\end{aligned}
$$

Minimum force $\left(p_{1}\right)$ ，，exp the body in equilm when sliding dousnueared

$$
\begin{aligned}
P_{1} & =\frac{\omega \sin (\alpha-\varphi)}{\cos (\theta+\varphi)} \\
P_{\text {mig } \phi=)}=P_{2}= & \frac{\omega \sin (\alpha+\varphi)}{\cos (\theta-\phi)}
\end{aligned}
$$

$$
P_{1}=\omega \frac{\sin (\alpha-\varphi)}{\cos (\alpha-\varphi)}
$$

$$
\Rightarrow p_{1}=\omega \tan (\alpha-\varphi)
$$

ii) Fore force. (P_{1}), when the badly is moving upulard.

$$
\begin{aligned}
& P_{1}=\omega \frac{\sin (\alpha+\varphi)}{\cos (\alpha+\varphi)} \\
& \Rightarrow p_{i}=\omega \tan (\alpha+\varphi)
\end{aligned}
$$

2
Find the total force. (2013) U.?
sol

$$
\begin{aligned}
& 2 \mathrm{~V}=0 \\
& 300 \cos 30^{\circ}=R+200 \sin 30^{\circ} \\
& \Rightarrow R=300 \cos 30^{\circ}-200 \sin 30^{\circ} \\
&=1
\end{aligned}
$$

$2 H 20$

$$
\begin{aligned}
& 200 \cos 30^{\circ}+300 \sin 30^{\circ}=F \\
& \Rightarrow \mu R=200 \cos 30^{\circ}+300 \sin 30^{\circ}
\end{aligned}
$$

Minimum force (p_{1}); , kep the body in equilin when siding dowenveared

$$
\begin{aligned}
P_{1} & =\frac{\omega \sin (\varphi-\varphi)}{\cos (\theta+\varphi)} \\
P_{\text {mine } N^{2}} P_{2} & =\frac{\omega \sin (\alpha+\varphi)}{\cos (\theta-\varphi)}
\end{aligned}
$$

2) An effert of awen is resueired sast to maver certain bedy up an incliced plane at an angles 15° the forer actirg II to plane. If angle pponctiv is 20°, then the effent reoy is found fo De 230 N . Find aceoight $c h$ the boly. s m .
gent

$$
\begin{array}{ll}
p_{1}=200 \mathrm{~N} & \rho_{2}=230 \mathrm{~N} \\
o n=15^{\circ} & a_{2} 220^{\circ}
\end{array}
$$

बनमि20
$F_{1}+\infty \sin \infty_{1}=20$
\Rightarrow der $1+$ atomsio is $=200$

$$
\begin{aligned}
& \Rightarrow \dot{q}(1+20 \cos \alpha+\sin) s=200 \\
& \Rightarrow \mu \omega \cos \alpha+r \sin \theta
\end{aligned}
$$

2) $(r \cos \alpha(r \cos \alpha+\theta)=2 \pi 0-(i)$

$\Sigma A_{1}=0$

$p=\omega \operatorname{sig} 20+F$

$$
\begin{aligned}
& p=\omega \operatorname{SQ} 20+2 \\
& \Rightarrow r R+\omega S A 20=230 \\
& \Rightarrow 620=2
\end{aligned}
$$

$$
\Rightarrow \begin{aligned}
& r r+\omega \cos 20+\omega \sin 20=230 \\
& r \omega \cos 20+\cos 20) 2230
\end{aligned}
$$

$$
\Rightarrow \quad r=0.259
$$

eq $70 \rightarrow \omega(.259) \times \cos 15+\sin 15)=225$ $\Rightarrow \mathrm{Ne}_{2} 392+\mathrm{AN}$

$$
\begin{aligned}
& R_{2}=\omega \cos 20^{\circ} \\
& \frac{r^{n}(2)}{e q(1)}=\frac{r \cos 20+\sin 20}{r \cos 15+\sin 15}=\frac{230}{200}
\end{aligned}
$$

b) A had of 1.5 k a resting on an inclined reangh plane, can be moved up ta plane by a force of a kN applied horizontally ε by a force of 1.25 kN applied 11 to the plane. Find angle of inclination $\& M$

$$
\begin{aligned}
& p=\omega \tan (\alpha+\phi) \\
& \Rightarrow=\operatorname{tin} \\
& 2=1.5 \tan (\alpha+\phi) \\
& \Rightarrow \gamma+\phi=53.1^{\circ} \\
& \Rightarrow=53.1-16.3^{\circ} \\
&=36.8^{\circ} \\
& r=\tan \varphi=\tan \times 16.3^{\circ} \\
&=.292
\end{aligned}
$$

(2)

$$
p=\omega \frac{\sin (\alpha+\varphi)}{\cos \varphi}
$$

$$
\begin{aligned}
& \Rightarrow 1.25=1.5 \frac{\sin (53.1)}{\cos \phi} \\
& \Rightarrow 1050=.96
\end{aligned}
$$

$$
\Rightarrow \quad \cos \phi=.96
$$

$$
\Rightarrow \varphi=16 \cdot 3^{x}
$$

8). Find the force reg to more a load soon upon rang plane the force outing beng "t to plane. The inclination of the plane is cush that owthen the same lead is hops on a perfectly smooth plane inclined at semelue, 1 a fere con applied at an inclination of 30 te the plane, heep the sam. load in equal $)^{1}$, $\mu=0,3$.
-30.

if s moth $\mu=0 \therefore \varphi=0$
Au r $\log _{2}=$

$$
\begin{aligned}
& P=\omega \frac{\sin (\alpha+\varphi)}{\cos (\theta-\varphi)} \Rightarrow 60^{2} \frac{30 \sin \phi}{\cos 30^{\circ}} \Rightarrow \alpha_{2}=10^{\circ} \\
& P=\omega \frac{\sin (a+\varphi)}{\Delta 3 \varphi} \Rightarrow 140.7 y \quad \begin{aligned}
& \mu=0.3 \\
& \operatorname{tang} \varphi=0.31 .0 .3 . \\
& \varphi=\tan =16.7
\end{aligned}
\end{aligned}
$$

2) $\mu=0.35$

$$
S P=F+800 \cos 30^{\circ} \Rightarrow P=\mu R_{n}+800 \cos 30^{\circ}
$$

$$
\begin{aligned}
& 2000=R_{n}+800 \sin 30^{\circ} \\
& \Rightarrow R_{n}=200^{\circ}-8-0 \sin 30^{\circ}
\end{aligned}
$$

\Rightarrow putting value of R_{n}.

$$
\begin{aligned}
& \text { outing value of } R n . \\
& P=r \times\left(2000-800 \sin 30^{\circ}\right)+800 \cos 30^{\circ} \\
& =(1252.82)^{\circ}
\end{aligned}
$$

Application of friction
3.3 LADER FRICTION

A loader is ar device for climbing on walls.

- As upper end of the ladder tends to slip coven ward, friction (Fw) is upward.
\rightarrow As the lover end tries to slip away from wall l_{0} allay from ${ }_{\text {fraction }}\left(I_{f}\right)$ is towards ${ }^{A} T_{R}$.
the wile.
- Since the system is in equill therefore the algeberis sums of hexizental s vertical components of the peaces must also be equal to zero.

9) A. uniform ladder of length 3.25 m and neighing
(1) 250 nt placed agonist a moth vertical veal. If's lexer end 1.15 m from the wall. The coreff. cert of friction bet ladder is floor is 0.3 . Determine frictional fere acting on ladder at pint of contract bet ladder s flo on.
Sn $n^{n} \quad \sum V_{2} O$

$$
R f=250 \mathrm{~N}
$$

from geometry

$$
\begin{aligned}
B C^{2} & =\sqrt{A B^{2}-A C^{2}} \\
& =30 \mathrm{~m}
\end{aligned}
$$

faking moment about 0 .

$$
\begin{aligned}
& R f \times 1.25-250 \times\left(\frac{1.25}{2}\right)=F_{f} \times 3 \\
\Rightarrow & F f=521 . \mathrm{V}
\end{aligned}
$$

2) \# Ladder 5 meter long rest on on horiuntal ground and leans agonist a smooth vertical real at an angle 70° with harizental. The weight of ladder e is 900 N and acts at it's middle. The ladder is at the point of sliding, When a man weighing/ 750N Sands on the ladder 1.5 m from bottom. calculate elf..

10 D 1.0 com

$$
\begin{aligned}
& w_{2}=70^{\circ} \\
& w_{1}=400 \mathrm{~N} \\
& w_{2}=750 \mathrm{~N} \\
& f_{f}=900+750=1650 \mathrm{~N}
\end{aligned}
$$

70°

$$
F_{f}=\mu \times R f=M \times 1650 \mathrm{~N}
$$

Taking moment about B

$$
\begin{aligned}
& R_{P} \times 5 \cos 70-900 \times 2.5 \cos 70 . \\
& -750 \times 3.5 \cos 70=I f_{f} \times 5 \sin 70 \text {. } \\
& R_{f} \times 5 \sin 20^{\circ}=900 \times 2.5 \sin 20-750 \times 3.5 \sin 20^{\circ} \\
& =F f \times 5 \cos 20^{\circ}
\end{aligned}
$$

, put the value of $F f$

$$
\begin{aligned}
& \Rightarrow 1650 \times 5 \sin 20^{\circ}=\left(4 f \times 1650 \times 5 \cos 20^{\circ}\right)+975 \\
& =4533 \mu+975 \\
& \Rightarrow \mu \mathrm{f}=0.15 \mathrm{Ams}
\end{aligned}
$$

Q) Turidentical bless of weight w are supported by a reed inclined at 45° with horizontal; as shaven in fig. If Bath the blouses are limiting. equilibrium, Find the corffiviend of friction. (L) (L) assuming it to be same as flare aruellas at wall.

Resolving furces nertically.

$$
\begin{align*}
F_{w}+R_{f} & =2 w \tag{1}\\
\Rightarrow r R_{w}+R_{f} & =2 w
\end{align*}
$$

New raslwing the ferces horizotally.

$$
\begin{align*}
& R_{w}=F f \\
& \Rightarrow R_{w}=r R_{f}
\end{align*}
$$

Bubstituting R_{ω} in equn (1).

$$
\begin{align*}
& r(r R f)+R f=2 w \\
\Rightarrow & r^{2} R_{f}+R f=2 w \\
\Rightarrow & R_{f}=\frac{2 w}{\left(1+\mu^{2}\right)} \tag{3}
\end{align*}
$$

polting nalue of $R f$ in equ" (2)

$$
R w=\mu \times \frac{2 w}{\mu^{2}+1}
$$

Taling moment in the forews abend bloek A

$$
\begin{aligned}
R_{w} & =l \cos 45^{\circ}+F_{w} \times l \cos 45^{\circ}=\omega \times l \cos 45^{\circ} . \\
& R_{w}+F_{w}=w \\
\Rightarrow & R_{w}+\mu R_{w}=w \\
\Rightarrow & R_{w}(1+4)=w
\end{aligned}
$$

puting value of $R_{\omega} \quad \frac{\mu \times 2 w}{\mu^{2}+1}(1+\mu)=w$

$$
\begin{aligned}
& \Rightarrow \quad 2 \mu(H \mu)=\mu^{2}+1 \\
& \Rightarrow \quad 2 \mu+2 \mu^{2}=\mu^{2}+1 \\
& \Rightarrow \quad \mu^{2}+2 \mu-1=0 \\
& \quad \mu=\frac{-2 \pm \sqrt{(2)^{2}+4}}{2}=0.414 \text { As }
\end{aligned}
$$

A wedge is usually, of a triangular in cross-section \& io generally, used for slight ads ustinerts in. the position of a body ic fer tightening fits or keys fore shafts. Sanctimes, a wedge is also used for liffingheany weight. it is made of ap neood or metal.

Wedge $A B C$, used to lift the body $D E F G$.
W = weight of the body, DFFG

$P=$ Force req. to bf the body
due to ${ }^{\text {Wedge }} \rightarrow$ Not considered. when forcer piscupplied in, The body will lift in upward direction $R A_{2}$

$\mathrm{RN}_{2} \rightarrow$ normal reese at $A C$ \& frictional force F_{2}. The result ort of both is R_{2}. onaviry an angle φ_{2}.

2) A uniform ladder of 4 m length rests aganst a vertical mall with which it makes an anole. of 95°. The. co.effi of friction bet ${ }^{m}$ loddens s wall of $\&$ that bet ladder bon flo 0.5. If a man whose weight is one-half of that ladder accesends it. how high it rid be when the ladder slips?

Sol $n \rightarrow$ distance bet $n A \in$ the man.

$$
\begin{aligned}
\text { night of man } & =\frac{\omega}{2} \\
& =.5 \omega
\end{aligned}
$$

$$
\begin{aligned}
& =.5 \mathrm{w} \\
& =0.5 \mathrm{Rf}
\end{aligned}
$$

$$
\begin{aligned}
& F_{f}=\mu_{0} R_{Q} q^{2}=0.5 \mathrm{Rf} \\
& F_{w}=\mu_{w} R_{w}=0.4 \mathrm{RW}
\end{aligned}
$$

$$
R w=R f=0.5 R f
$$

$$
R_{y f}=2 R_{w}
$$

Resolving practically $R_{f}+F_{w}=\omega+8.5 \mathrm{w}$

$$
\begin{aligned}
& \Rightarrow 2 R_{w}+0.4 \cdot R_{w}=1.5 \mathrm{w} \\
& \Rightarrow \quad R_{w}=\frac{1.5 W}{2.4}=0.625 w
\end{aligned}
$$

$$
\begin{aligned}
F_{w} & =.4 \times .625 \mathrm{w} \\
& =0.25 \mathrm{w}
\end{aligned}
$$

Poling moment about

$$
\begin{aligned}
\left(\omega x^{2} \operatorname{as} 45^{\circ}\right. & \left.+5 \omega x x \cos 45^{\circ}\right) \\
& =R \omega \times 4 \sin 45^{\circ}+F_{\omega} \times \times \cos 45^{\circ}
\end{aligned}
$$

put value of Kw Nw

$$
x=3.0 \mathrm{~m} .
$$

CHAPTER \rightarrow OG Centre of Gravity
Centre of greasily can be defined as a paint through stich the whole weight of the body acts, irreopect of at's position. De may be noted that everybody has one and only one centre of graving.
4.1 Centroid

The plane figures like triangle, rectangle, circle etc have only area, but no mas. The centre of area of such fig is knswen as centroid.

Centroid of baric geometrical figurs

2)

Scanned by CamScanner

$$
\begin{aligned}
& \vec{x}=r \\
& \bar{y}=r
\end{aligned}
$$

$$
\begin{aligned}
& \bar{X}=\pi \\
& \bar{Y}=4 \pi / 3 \pi
\end{aligned}
$$

b)

$$
\begin{aligned}
& \bar{x}=4 \mathrm{r} / 3 \pi \\
& \bar{y}=4 \mathrm{r} / 3 \pi
\end{aligned}
$$

Where $\bar{x} \& \bar{y}$ is the co-ordinates of centrodely gram

Cotter of grandly by Moments

comider a body of mass M whose centre. of gravity is required to be found out. Let it is clenided into small masses $m_{1}, m_{2} m_{3} \ldots$. I the co-orelinafes are $\left(x_{1}, y_{1}\right)$

$$
\begin{aligned}
& \left(x_{2}, y_{2}\right) *\left(x_{3} y_{3}\right) \\
& M \bar{x}=m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{2} \ldots \\
& \bar{x}=\frac{s m x}{M}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{y}=\frac{\sum m y}{M} \\
& M=m_{1}+m_{2}+m_{3}+\cdots .
\end{aligned}
$$

Axis of Reference
The centre of gravity of a body is alueays calculated with reference to os acme assumed axis seven as axis of references, called as axis of reference. from cohere \bar{x} \& \bar{y} on colurlated.

Centre of ogranity of plane figure
The plane geometrical fictions such as J, I, L sections only have area but no mass. Fere these the centroid s cure of gravity is same.

$$
\begin{aligned}
\bar{x} & =\frac{a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\cdots}{a_{1}+a_{2}+a_{3}+\cdots} \\
\bar{y} & =\frac{a_{4} y_{1}+a_{2} y_{2}+a_{3} y_{3}+\cdots}{a_{1}+a_{2}+a_{3}+\cdots}
\end{aligned}
$$

Center of gravity of Symmetrical sections

- of the given section is aymetrical about $x-x$ axis then we have to find \bar{x}.
- of it is symmetrical to $y-y$ axis then we have to find $\bar{x} \& \bar{y}$.
(2) Find the centree of greavily of $100 \mathrm{~mm} \times 150 \mathrm{~mm} \times 30 \mathrm{~mm}$ of T. section.

9015
This section of is symmetrical about $y-y$ axis.

Splet the sectien in 2 seltion.

$$
A B C D ; E F G H
$$

Fore rectangle $A B C D$.

$$
\begin{aligned}
& a_{1}=100 \times 30=3000 \mathrm{~mm}^{2} \\
& y_{1}=\left(150-\frac{30}{2}\right)=135 \mathrm{~mm}
\end{aligned}
$$

reetangle $5 E G H$

$$
\begin{aligned}
a_{2}=s(150-30) \times 30 & =120 \times 30 \\
& =3600 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
y_{2}=120 / 2=60 \mathrm{~mm} .
$$

$$
\bar{y}=\frac{a_{1} y_{1}+a_{2} y_{2}}{a_{1}+a_{2}}=\frac{3000 \times 135+3600 \times 60}{3000+3600}
$$

$=94.1 \mathrm{~mm}$.
2) Symmetrical abeut $x-x$ axes.

- i) Recfargle ABIF.

$$
\begin{aligned}
& a_{1}=15 \times 50=750 \mathrm{~mm}^{2} \\
& x_{1}=50 / 2=25 \mathrm{~mm}
\end{aligned}
$$

2) Reltanofe. $C D H J$

$$
\begin{aligned}
& a_{2}=50 \times 15=750 \mathrm{~mm}^{2} \\
& x_{2}=50 / 2=25 \mathrm{~mm} .
\end{aligned}
$$

3) Reltagle IEJG.

$$
\begin{aligned}
a_{3}= & =100050 \mathrm{~mm}^{2} \\
& =150 \times(100-30) \\
x_{3} & =1 \mathrm{~m} / 2=7.5 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\bar{x}_{0} & =\frac{a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}}{a_{1}+a_{2}+a_{3}} \\
& =\frac{750 \times 25+750 \times 25+(1050 \times 7.5)}{750+1050+750} \\
& =17.8 \mathrm{~mm}
\end{aligned}
$$

6)

$$
\begin{aligned}
a_{1} & =150 \times 50 \\
y_{1} & =100+300+\frac{50}{2} \\
& =400+25=425 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& a_{2}=300 \times 100 \\
& y_{2}=100 / 2=50 \mathrm{~mm} \\
& a_{3}=800 \times 50 \\
& y_{3}=100+\frac{300}{2}=250 \mathrm{~mm} \\
& \bar{y}=\frac{a_{1} y_{1}+a_{2} y_{2}+a_{8} y_{3}}{a_{1}+a_{2}+a_{9}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}=\frac{a_{1} x_{1}+a_{2} x_{2}}{a_{1}+a_{2}}=25 \mathrm{~mm} \\
& \bar{y}=\frac{c_{1} y_{1}+a_{2} y_{2}}{a_{1}+a_{2}}=35 \mathrm{~mm}
\end{aligned}
$$

2) A uniferm lamina is showen in fieg. Defermene the C.G of the cameres.
a) for the reetangle.

$$
\begin{aligned}
& a_{1}=100 \times n 0=5000 \mathrm{~mm}^{2} \\
& x_{1}=25+100 / 2=75 \mathrm{~mm} \\
& y_{1}=50 / 2=25 \mathrm{~mm}
\end{aligned}
$$

fon saniarcle:
for \triangle.

$$
\begin{aligned}
& a_{2}=\frac{\pi r^{2}}{2}=\pi / 2(25)^{2}=982 \mathrm{~mm}^{2} \\
& x_{2}=25-4 \pi / 3 \pi=14.4 \mathrm{~mm}^{2} \\
& y_{2}=56 / 2=25 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{gathered}
y_{2}=50 / 2 \\
a_{3}=\frac{1}{2} \times b \times h=\frac{1}{2} 50 \times 50=1250 \mathrm{~mm}^{2} \\
25+50+25=100 \mathrm{~mm}
\end{gathered}
$$

$$
\begin{aligned}
& a_{3}=\frac{1}{2} \\
& x_{3}=25+50+25=10 \mathrm{~mm} \\
&
\end{aligned}
$$

$$
y_{3}=50+50 / 3=66.7 \mathrm{~mm}
$$

$$
\begin{aligned}
& \bar{x}=\frac{a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}}{a_{1}+a_{2}+a_{3}}=71+\mathrm{mm} \\
& \bar{y}=\frac{a_{2} y_{1}+a_{2} y_{2}+a_{3} y_{3}}{a_{1}+a_{2}+a_{3}}=32-2 \mathrm{~mm}
\end{aligned}
$$

4.2 MOMENT OF INERTIA

Moment of ferce $=F \times \perp$ dintance. $11^{\text {st moment of focre. }}$
of $F \times$ drodistance x Die distance ($2^{\text {nd }}$ mement of focer)
M.M.O.F / Second moment of or moment, mement
force of of focer)
Somitine trea 8 mass canbe found out by above roethe de.
\rightarrow abso knowen as Mament of mertio.

$$
\begin{aligned}
& \left\{\begin{array}{l}
M \cdot M \cdot O \cdot A \\
M \cdot M \cdot O \cdot M
\end{array}\right. \\
& I_{y y}=\left\{d_{A} \cdot x \quad(M \cdot I \text { abeut }\right. \\
& =\Sigma d A \cdot x \cdot x \\
& \text { Iyy }=\operatorname{sd} A \cdot x^{2} \quad-M I \text { abent } \\
& \text { yy asis } \\
& I_{y y}=\int d A \cdot x^{2} \\
& I_{x x}=\int d A \cdot y^{2}-M \cdot I \text { abert } x x \text { axis }
\end{aligned}
$$

Mament of ixertia $=$ farere $\left.(\text { porpendiculardisten })^{2}\right)$ wint $=\mathrm{Nm}^{2}$

Moment of inertion of a rectangulare section. concidere a restergalare section $A B C D$.
$b \rightarrow$ Width of thesection
$d \rightarrow$ depthe of the section
Considere a small strip $P 2$ of thicleness $d y \prime 1$ to $x-x$ atw at or distaree y from the center axis.

Area of sinall strip $=d A=b x d y$ M.O. I of strip abent x - x axis

$$
\begin{aligned}
& =\text { Area } x y^{2} \\
& =d A \cdot y^{2} \\
& =b x d y \cdot d y^{2}
\end{aligned}
$$

$$
\begin{aligned}
I x-x & =\int_{-d / 2}^{1 / 2} d A \cdot y^{2} . \\
& =\int_{-d / 2}^{d / 2} b \cdot d y \cdot y^{2}
\end{aligned}
$$

$$
\begin{aligned}
=b \int_{-d / 2}^{d 2} y^{2} \cdot d y & =b\left[\frac{y^{3}}{3}\right]_{-d / 2}^{d / 2} \\
& \left.=b\left[\frac{(d / 2)^{3}}{3}-\frac{\left((d / 2)^{3}\right.}{3}\right]^{3 / 2}-\left(-d^{3} / 8\right)^{-}\right]
\end{aligned}
$$

Parhellow $\underset{\sim b \rightarrow r \mid b}{* b \rightarrow} d$

$$
\Sigma_{x\rangle}=\frac{b^{-b} \rightarrow}{12}-\frac{b_{1} d^{3}}{12}
$$

$$
\text { Dyy }=\frac{d b^{3} / 12}{12}-d^{1} b^{3} / 12 \quad \quad I_{x x}=b d^{3} / 12 .
$$

M.I of a circular section.

- Consider a vircle: $A B C D$ with. cuntree. 0 .
- convider a recig of radius x and thickenes ofre.
arcen of the ring $d a=2 \pi x \cdot d x$
 MO. I aboust $x x_{x}$ axis $=$ drea x distance ${ }^{2}$

$$
\begin{aligned}
\text { about } x y \text { anis } & =2 \pi x \cdot d x \times x^{2} \\
& =2 \pi x^{3} d x .
\end{aligned}
$$

Now M.I abuent the contral axis ted it be Ize.

$$
\because I_{x x}=I_{y y}=\frac{I_{x t}}{2}=\frac{\pi}{64} d^{4}
$$

Theorem of perpendiculan Ancis

$$
x_{e x}=\frac{\pi}{64}\left(D^{y}-d^{4}\right)=3
$$

If staten that of Iyx $\& I_{y y}$ pe the moment of inertion of a plane section abent 2 . pecpendicules - oxis metting at 0 , the moment of inertia about $I_{z Z}$ abeut ther \mathbb{X} axis perependiulan to the plane and parsing thriough intersection of $x-x \& y-y$ is given by

$$
I_{Z Z}=I_{X x}+I_{Y y}
$$

proof convidercai laminas (p) of area do having ea-ordinales $x, 8 y$ an shaposicial alang 0×2 oy ancis as
 Shorenen fil.
considerea plane oz 1 tooxs oy. Let re bethe distance of Clamino p from $L z a x i y$. $\theta p=r e$ from germetry $r^{2}=x^{2}+y^{2}$
M.I abent $X X \quad I_{x y}=d a-y^{2}$

$$
\text { yy } \quad \text { Iyy }=d a \cdot x^{2}
$$

$$
\begin{aligned}
& I 2 z=\int_{0}^{\pi} \sin ^{3} d x=\pi \int_{0}^{\pi} x^{3} d x \\
& \left.=2 \pi \frac{x^{\phi}}{4}\right]^{r} \\
& =\frac{\pi}{2} \times \pi^{4}=\frac{\pi}{32} d^{4}(r=d / 2)
\end{aligned}
$$

$$
\begin{aligned}
I_{\text {IA }} & =d a \cdot r^{2} \\
& =d a\left(x^{2}+y^{2}\right) \\
& =d a x^{2}+d a \cdot y^{2} \\
I_{\pi x} & =I \times x+I y y
\end{aligned}
$$

Thesrom of parallel axes
of states that of the M.I of a plane area about an acis through it's centre of gravity is denoted by If , then moment of incritin of the areas absent any other axis $4 B$, parallel to the 18 , and btadistonce harem the $C \cdot G$ is given by

$$
I_{A B}=I_{G}+a h^{2}
$$

IAS \rightarrow M.D on the area about axis $A B$.
$I_{G} \rightarrow M \cdot I \ldots$ about c. \rightarrow.
$a \rightarrow$ area of section
$h \rightarrow$ distance bet $C \cdot G$ i see $A B$.
comider a strep op acincle, whore M. I required to be found out
let $\mathrm{Sa}=$ area of of trip $y=$ distance of strep from.
 CA.
L odisture of $O G$ from axis $A B$
M.I of whole rection about an axis paring through

$$
C H=\delta a \cdot y^{2}
$$

$I_{G}=\left\{\delta a \cdot y^{2 \cdot} M I\right.$ oh whole see passing through cG.

MI of section about $A B$

$$
\begin{aligned}
& I_{A B}=\left\{\mathrm{Sa}(h+y)^{2}\right. \\
& =\left\{\delta a r\left(h^{2}+y^{2}+2 h y\right)\right. \\
& =\left(\left\langle h^{2} \delta a\right)+\left(5 y^{2} \cdot \delta a\right)+\left(\sum 2 h y \rho-s a\right)\right. \\
& I_{A B}=a h^{2}+I G \text {. } \\
& S h^{2} \mathrm{sa}_{a}=\mathrm{Sh}^{2} \text { sum of moments } \\
& \left\langle y^{2} \mathrm{Sa}=\mathrm{I}_{9}\right.
\end{aligned}
$$

M.I of a triangulareg Section
consider a triangular section $A B C$ whose, $M \cdot I$ in required to be find ont. $b \rightarrow b$ are
$h \rightarrow$ height
Consider a small see $^{n} P 2$ of

$$
(B C=b a s e=b)
$$ thickness $d x$ at a distance from vertex A. for $\triangle A P Q, \triangle A B C$

$$
\begin{aligned}
& \frac{P Q}{B C}=\frac{x}{h} \\
\Rightarrow & P Q=\frac{B C \cdot x}{h}=\frac{b \cdot x}{h}
\end{aligned}
$$

Small area of PQ $=\frac{b \cdot \dot{x}}{h} \times d x$
M.I of strip abent $B C=$ Area x (distance) $)^{2}$

$$
\begin{aligned}
& =\frac{b x}{h} \cdot d x \times(h-x)^{2} \\
& =\frac{b x}{h} \cdot(h-x)^{2} \cdot d x
\end{aligned}
$$

M.I. of whole reaction \triangle can be found out by integrating the above from 0 to h
M.I. of -triangulare cestion threough axies of ite centre of gravity. parallel to x-axis

$$
\begin{aligned}
& I_{G}=\frac{I_{B C}-a d^{2}}{b h^{3}} \\
& =\frac{b h}{12} \times\left(\frac{h}{3}\right)^{2} \\
& I_{G}=\frac{b h^{3}}{36}
\end{aligned}
$$

$$
d=h / 3
$$

$$
I_{B C}=I_{G}+a b^{2}
$$

Moment of Inertion of a composite section.
Steps
$\rightarrow 1^{\text {s }}$ eplit up the given soction into plane areins.
\rightarrow Dind M.I of there arent about their repective C.G. \rightarrow Apply parcollel axis theorem.
\rightarrow Obtain the M.I.

$$
\begin{aligned}
& I_{B C}=\int_{0}^{h} \frac{b x}{h}(b-x)^{2} d x \\
& =\frac{h}{h} \int_{0}^{h} x \cdot\left(h^{2}+x^{2}-2 h x\right) d x \\
& =\frac{b}{h} \int_{0}^{h}\left(x h^{2}+x^{3}-2 h x^{2}\right) d x \\
& =\frac{b}{h}\left[\frac{x^{2} h^{2}}{2}+\frac{x^{4}}{4}-\frac{2 h x^{3}}{3}\right]_{0}^{h} \\
& z \frac{b}{h}\left[\frac{h^{4}}{2}+\frac{h^{4}}{4}-\frac{2 h^{4}}{3}\right]=\frac{b}{h}\left[\frac{2 h^{4}+h^{4}}{24}-\frac{2 h^{4}}{3}\right] \\
& =\frac{3}{h}\left[\left(c^{4}-2 h^{2}+1\right.\right. \\
& =\frac{b}{h}\left[\frac{3 h^{4}}{4}-\frac{2 h^{4}}{3}\right]=\frac{b}{h}\left[\frac{9 h^{4}-8 h^{4}}{12}\right]=\frac{b h^{3}}{12}
\end{aligned}
$$

Q) Find $4 \cdot 2$ abert axis $K K$

Speifup the seen into (1) \& (2).
for seen (1). $I_{G_{11}}=M \cdot I$ about $C \cdot G$ about the axis $k-k$.

$$
I_{G_{1}}=\frac{d b^{3}}{12}=\frac{120 \times 40^{3}}{12}=640 \times 10^{3} \mathrm{~mm}^{4}
$$

$h_{1}=100+\frac{40}{2}=120 \mathrm{~mm}$. (distance betn C.G of $\sec ^{n}$ (1) \& axis $k-k$)
H. I of $\sec ^{7}(1)$ axis $k-k$.

$$
\begin{aligned}
I_{x g} & =I_{G_{1}}+a_{1 h_{1}^{2}} \\
& =\left[\left(640 \times 10^{3}\right)+(120 \times 40) \times(120)^{2}\right] \\
& =69.76 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Simitarly M.I of section (2) above. it's C.G eparcallel to axis $k-k$.

$$
\begin{aligned}
& \text { parcellel to axes } \\
& I_{G_{2}}=\frac{d b^{3}}{12}=46.08 \times 10^{6} \mathrm{~mm}^{4} \\
& h_{2}=100+\frac{240}{2}=220 \mathrm{~mm} \\
& I G_{2}+a_{2} h_{2}^{2} \\
&=\left[\left(46.08 \times 10^{6}\right)+(240 \times 40) \times(220)^{2}\right]: \\
&=510.72 \times 10^{6} \mathrm{~mm}^{4} \\
& I K k=69.76 \times 10^{6}+510.72 \times 10^{6} \\
&=580.48 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Q) Find the M.I of a T-section weith as $150 \mathrm{~mm} \times$ eromm and veeb $150 \mathrm{~mm} \times 50 \mathrm{~mm}$ about $x-x \in \quad y-y$ axis threangh the centree of greavity of the suction.

30 ${ }^{N} / \mathrm{R}$ Retangle. (1)

$$
\begin{aligned}
& a_{1}=150 \times 50=7500 \mathrm{~mm}^{2} \\
& y_{1}=150+\frac{50}{2}=175 \mathrm{~mm}
\end{aligned}
$$

Rectangle (2)

$$
\begin{aligned}
& a_{2}=150 \times 50=7500 \mathrm{~mm}^{2} \\
& y_{2}=\frac{150}{2}=75 \mathrm{~mm} \\
& \bar{y}=\frac{a_{1} y_{1}+a_{2} y_{2}}{a_{1}+a_{2}}=\frac{(7500 \times 175)+(7500 \times 75)}{7500+7500}=125 \mathrm{~mm} \\
& 1 \text { (1) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { M.I of (1) abeut } x-\times a \times i s \\
& I_{G_{1}}=\frac{d^{3}}{12}=\frac{150 \times 50^{3}}{\frac{1}{2}}=1.5625 \times 10^{6} \mathrm{~mm}^{4} \quad y \rightarrow \text { dis } \\
&=1500+7500 \\
& h_{1}=150+\frac{50}{2}-125
\end{aligned} \quad=50 \mathrm{~mm} \quad \text { frem }
$$

$$
\begin{aligned}
& y \rightarrow \operatorname{distance} \\
& \text { frem C.G. }
\end{aligned}
$$

Sinubarcly $1.1-2$ of (2) about $x-x$ axis

$$
I_{q 2}=\frac{b d^{3}}{12}=\frac{50 \times(150)^{3}}{12}=14.06 \times 10^{6} \mathrm{~mm}^{4}
$$

$$
h_{Q}=125-\frac{150}{2}=50 \mathrm{~mm}
$$

M.T aboul $X X$ axies $I_{G_{2}}+a_{2} h^{2}$

$$
M . T \text { aboul } K X \text { axcs } I G_{2}+a_{2} h_{2}
$$

$$
\begin{aligned}
& I q_{2}+a_{2} h_{2} \\
= & 14.06 \times 10^{6}+7500 \times 50^{2} .
\end{aligned}
$$

$$
=32.8125 \times 10^{6} \mathrm{~mm}^{4}
$$

$$
I_{x x}=20.3125 \times 10^{6}+32.8125 \times 106
$$

$$
=53.125 \times 10^{6} \mathrm{~mm}^{4} \mathrm{fng}
$$

Moments abeute $y-y$ ace

$$
\begin{aligned}
& I G_{1}=\frac{d b^{3}}{12}=\frac{50 \times 150^{3}}{12}=14.0625 \times 10^{6} \mathrm{~mm}^{4} \\
& I G_{2}=\frac{d b^{3}}{12}=\frac{150 \times 50^{3}}{12}=1.5625 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Premy axis the distance is xere.
M.I abrent $Y-Y$ anis (1).

$$
I_{G_{1}}+a_{1} 1^{2>0}=14.0625 \times 10^{6} \mathrm{~mm}^{4}
$$

NI about Y - y axis (2)

$$
\begin{aligned}
B_{y y} & =14.0625 \times 10^{6}+1.5625 \times 10^{8} \\
& =15.625 \times 10^{6} \mathrm{~mm}^{4} \text { Ans }
\end{aligned}
$$

2)

Find the M.I of the given section abiout horisental axis passing through C.G. Rind M. I about $X-X$ axio
9017) Thes $\operatorname{see}^{\circ}$ is symmetric abeut yaxis. 86 proco

Rut (1).

$$
\begin{aligned}
& a_{1}=60 \times 20=1200 \mathrm{~mm}^{2} \\
& M_{1}=60 / 2=30 \\
& y_{1}=120+\frac{20}{2}=130 \mathrm{~mm}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& a_{2}=100 \times 20=2000 \\
& y_{2}=20+\frac{100}{2}=70 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } a_{3}=100 \times 20=2000 \\
& y_{3}=20 / 2=10 \mathrm{~mm} \\
& \bar{y}=\frac{a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}}{a_{1}+a_{2}+a_{3}}=608 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{I} G_{1}=\frac{b d^{3}}{12}=\frac{60 \times 20^{3}}{12}=40 \times 10^{3} \mathrm{~mm}^{4} \\
& h_{1}=y_{1}-\bar{y}=130-60.8=69.2 \mathrm{~mm}
\end{aligned}
$$

M.I of rectangle. (1) about $x-x$

$$
\begin{aligned}
I_{G_{1}}+a_{h 1} 1^{2} & =40 \times 10^{3}+\left[1200 \times(69.2)^{2}\right] \\
& =5786 \times 10^{3} \mathrm{~mm} 4
\end{aligned}
$$

for (2)

$$
\begin{aligned}
& \text { 2) } I_{G_{2}}=\frac{b d^{3}}{12}=\frac{20 \times 10^{3}}{12}=1666.7 \times 10^{3} \mathrm{~mm}^{4} \\
& h_{Q_{2}}=g_{2}-\bar{y}=70-60.8=9.2 \mathrm{~mm} \\
& I_{\times \times(2)}=I G_{2}+a h_{2}^{2}=1836 \times 10^{3} \mathrm{~mm}^{4}
\end{aligned}
$$

for (3)

$$
\begin{aligned}
& I_{\times \times(2)^{2}}=\frac{100 \times 20^{3}}{12}=66.7 \times 10^{3} \mathrm{~mm}^{4} \\
& I C_{3}=\frac{10.8}{} \\
& h_{3}=\bar{y}-y_{3}=60 \cdot 9-10=50.8 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& I_{x \times(b)}=\text { PG }_{3}+a_{3} h_{3}^{2}=5228 \times 10^{3} \mathrm{~mm}^{4} \\
& D_{\times \times}=\left(5+86 \times 10^{3}\right)+\left(1836 \times 10^{3}\right)+\left(5228 \times 10^{3}\right) \\
&=12850 \times 10^{3} \mathrm{~mm}^{4}
\end{aligned}
$$

2' Find the M. 2 abeut the centresidal. $x-x=y-y$ axis of the angle section.
soty Itis sectim is not symmetrical abent x ory axes. Qelangle. (1)

$$
\begin{aligned}
& a_{1}=100 \times 20=2000 \mathrm{~mm}^{2} \\
& y_{1}=100 / 2=50 \mathrm{~mm}
\end{aligned}
$$

(2)

$$
\begin{aligned}
\text { (2) } a_{2} & =80 \times 20=1600 \mathrm{~mm}^{2} \\
y_{2} & =\frac{20}{2}=10 \mathrm{~mm} \\
\bar{y}=\frac{a_{1} y_{1}+a_{2} y_{2}}{a_{1}+a_{2}} & =\frac{200 \times 50+1600 \times 10}{2000+1600}=35 \mathrm{~mm}
\end{aligned}
$$

M. I of (1) abeut $x-x$ axis.

$$
\begin{aligned}
I_{G_{1}}=\frac{b_{1} 3}{12}=\frac{20 \times 100)^{3}}{12} & =1.667 \times 10^{6} \mathrm{~mm}^{4} \\
h_{1}=y_{1}-\bar{y}=50-35 & =15 \mathrm{~mm} \\
I_{\times x}(1)=2 G_{1}+a_{1} h_{1}^{2} & =1.667 \times 10^{6}+2000 \times(15)^{2} \\
& =2.117 \times 16^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

M.I of (2) abont x - x-axis

$$
\begin{gathered}
I G_{2}=\frac{b d^{3}}{12}=\frac{60}{12}=0.04 \times 10^{3} \mathrm{~mm}^{4} \\
h_{2}=\bar{y}_{2}-\hat{y}_{2}=35-10=25 \mathrm{~mm} \\
I \times \times(2)=I G_{1}+a_{2} h_{2}^{2}=0.79 \times 10^{6} \mathrm{~mm} 4
\end{gathered}
$$

$$
I_{x}-x=I \times x(1)+I \times x(2) \geq 2.407 \times 10^{6} \mathrm{~mm}^{4}
$$

M.I abent y axis

$$
\begin{aligned}
& x_{1}=20 / 2=10 \mathrm{~mm} \\
& x_{2}=20+60 / 2=50 \mathrm{~mm} \\
& \bar{x}_{2}=\frac{a_{1} x_{1}+a_{2} x_{2}}{a_{1}+a_{2}}=25 \mathrm{~mm} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { M. I of (1) obert } y-y \text { aris } \\
& I G_{1}=\frac{d b^{3}}{12}=\frac{100 \times 20^{9}}{12}=0.06 \times 10^{6} \mathrm{~mm}^{4} \\
& \text { * } \text { hr }_{1}=\bar{x}-x_{1}=25-10=15 \mathrm{~mm} \\
& D_{\text {YY (1) }}=2 G_{1}+\left(0 h^{2}=0.06 \times 10^{6}+2000 \times 15^{2}\right. \\
& =0.917 \times 10^{6} \mathrm{~mm}^{3} \\
& \text { I.M.I of (2) } y-y \\
& P_{y y(2)}=P_{G_{2}}+a_{2} h_{2}^{2}=1.11 \times 10^{6} \mathrm{~mm}^{4} \\
& I y y=\text { Pyy(1) }+ \text { Iyy(a) } \\
& =1.627 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

couprer-05 Principle of Lifting Machines.
5.1 LNYachine:-2) is an assembly of inderciennocted components arranged to transmit ore modify farce in ardor to perform woeful corks.
$L_{\text {Simple machine: - }}$ of is defined os a machine. which helps to do some correl. at some paint when effortof force is applied to it.
\rightarrow compound machine:- st can be defined as a device Which comist of no of simple machine which enable us to to sameneork of a fester speed with less effort as compare to simple machine.
L Lifting 'Machine: - The machine which are use to lift heawly lead are called lifting machine. In a biffing machine a force or lead (ω) applied at one point by means of another e force called effort (P) applied at another point.
) Mechanical Advantage (M.A)

$$
\begin{aligned}
& M \cdot A=\frac{\text { height lead effed }}{\text { effort applied }}=\frac{w}{P} \\
& M \cdot A=\frac{w}{P}
\end{aligned}
$$

2) Velocity Ratio (V.R)

$$
V \cdot R=\frac{\text { Qictance moved by effort }}{\text { Distance moved by lead }}=\frac{y}{x}
$$

Scanned by CamScanner
9) Input :- it can be defined as worth dene on the machine. It is measured by the product of effort applied the dirtenve conned by the effort f.
$i / p=\rho \times y$ on effort x effort distance.
4 output : - if is defined as the weorele dare by the machine. It is the preduel of lead lifted a distance severed by the Load.
output $=10 \times x$ Lead \times load i stance.

Efficiency (V)/Redation bet M Y,M.A,V.R
Ration work dane by the machine.

$$
\begin{aligned}
=\frac{w \times x}{p \times y} & =\frac{w}{p} \times \frac{q}{y} \\
& =\frac{w}{p} \times \frac{1}{y / x}=\frac{M \cdot A}{\eta=\frac{M \cdot A}{V \cdot R}}<\frac{1}{V \cdot R}
\end{aligned}
$$

Ideal Machine

$$
\begin{aligned}
& \eta=\frac{M \cdot A}{V R}=100^{\circ} \\
& \therefore=\theta / P=i / P .
\end{aligned}
$$

2) In ascertain weight. Effing ale a neight of 1 ka is lifted log aneffort of 25 N . While wat moves by 100 mm , the point of application of effort moves by 8 m . Ind MA, we 29 .
$9+17$

$$
\begin{aligned}
& \text { int of application of of } \\
& \begin{array}{l}
w=1 K N \\
p=25 \mathrm{~N} \\
x=100 \mathrm{~mm}=.1 \mathrm{~m} \\
y=8
\end{array} \\
& V R=y / x=80 \\
& V=M A / V R=0.5=50 \%
\end{aligned}
$$

2)

$$
\begin{aligned}
& \text { Effort }=50 \mathrm{~N}(p) \\
& \text { Lend }(w)=500 \mathrm{~N} \\
& \text { effort distance }=(y)=55 \mathrm{~cm}=0.55 \mathrm{~m} \\
& \text { Lead distere }=(x)=5 \mathrm{~cm}=0.05 \mathrm{~m} \\
& V R=y / r=\frac{.55}{.05}=11 \\
& M \cdot A=\frac{500}{50}=10 \\
& \eta=\frac{10}{11}=0.9 \%=90 \%
\end{aligned}
$$

3) $\quad R \cdot R=50$

Detremin w \& $p=60$ $\eta=70 \%$

$$
\begin{array}{ll}
V R=y / x & \eta=\frac{W A}{V R} \\
M A=\frac{W}{P} & \Rightarrow: 70=\frac{M A}{50} \\
\Rightarrow W=2100 \mathrm{~N} . & \Rightarrow M A=35
\end{array}
$$

Reversibility of a Machine.
doing Sometimes, a machine is also capable of on the reversed direction, after effort is removed. Such a mic is called a reversible m / c \& unowned os reversibility of a machine.

Condition for Reversibility/ of $a n / e$
$\omega \rightarrow$ load lifted by the m / e
$P \rightarrow$ effort req to lift the lond
$y \rightarrow$ distances moved by effort
$x \rightarrow$ distance moved by lead.

$$
\begin{aligned}
& i / p=p \times y \\
& 0 / p=w \times x
\end{aligned}
$$

We know that m / c frifien $=i / p-0 / p$

$$
=p \times y-\omega \times x
$$

If the m / e is keverevile then the o / p of the machine. sherld be more than friction.

$$
\begin{aligned}
& w \times x>p \times y-w \times x \\
\Rightarrow & 2 w \times x>p \times y \\
\Rightarrow & \frac{w \times x}{p \times y}>\frac{1}{2} \\
\Rightarrow & \frac{w / p}{y / x}>1 / 2
\end{aligned} \quad\left\{\begin{array}{l}
\frac{M \cdot A}{V A}>1 / 2 \\
\frac{M A}{V R}>50 \% \\
\eta \geqslant 50 \%
\end{array}\right.
$$

So the condition is of the machine is reversible the efficiency is mere than 50%.
Soft locking m / c
Some time a machine io not capeble. of doing any were when the effort is removed. Such machine is called as selflocking machine. Here the effacing should netbe mere than 50.1..

Law of Machine.
Law of mentine may be defined as the relationship between effort applied s land offed.
Natmmetieally it is $p=m w+c \quad p \rightarrow e$ effect

$\omega \rightarrow$ Load luffed
$($ slope $) m \rightarrow$ cont eorepont
$C \rightarrow$ Anther come. geppenent $m / 2$ friction. of friction need to
creccums by the machine.
2) What lead can be liftud by an effent- of 120 N , if the vele. ratio is 18 \& $\eta=60 \%$. Determine the law of the machine, if it is obsecred that an efforls of 200 N is reqg to lift ar loal of 2000 N \& gind the effent req to run the mle at a load of 3 - 收N.
col?

$$
\begin{aligned}
& V \cdot R=y / x=18 \quad P=126 \\
& \eta=6
\end{aligned} \begin{aligned}
\frac{W / P}{V / R} & =6 \quad \Rightarrow \frac{\omega}{P}
\end{aligned}=\begin{aligned}
& =V \cdot R x \cdot 6 \\
& =18 \times 6 \\
& =9 \times 10.8 \\
\Rightarrow \omega & =120 \times 9 \times \mathrm{m} .10 .8 \\
& =1296 \mathrm{~N}
\end{aligned}
$$

Liaves of $m / c \quad p=200$

$$
\begin{align*}
& w=2600 \\
& P=m w+c \\
& 120=m \times 1296+c \tag{1}\\
& 200=m \times 2600+c \tag{2}\\
&+80=7 m 1304 \\
& \Rightarrow m=0.061
\end{align*}
$$

put the value of m in equ? (2)

$$
120=0.061 \times 7296+C \quad 200=0.061 \times 2600 \mathrm{HC}
$$

$$
\Rightarrow-2=1+15
$$

$$
\Rightarrow c=44
$$

Nour effert req. to riff a leod of $3,5 \mathrm{Li})=35 \times \mathrm{p}^{3}$

$$
\begin{aligned}
& P=.061 \times 3.5 \times 10^{3}+44 \\
& P=257 \mathrm{~N} \text { AN }
\end{aligned}
$$

6) Des iviting uk as eftert of toN resired a laod F IXN if iffieiercy of the m/a iro.5. What is
 a cont if 2 K . wivir is new effieiency? what will

4t

$$
\begin{aligned}
& p=40 \mathrm{~N} \quad, \quad=0.5 \mathrm{~N} \cdot \\
& w=14 \mathrm{~N}=1000 \mathrm{~N} \cdot p=74 \mathrm{~N} \cdot w=2 \mathrm{kN}=2000 \mathrm{~N} .
\end{aligned}
$$

veloing teatio xhen iffi is $05 \cdots$

$$
\begin{aligned}
& N H=\frac{\omega}{P}=\frac{1000}{40}=25 \\
& T=\frac{N \cdot A}{V \cdot R}=\frac{25}{V \cdot R} \Rightarrow V \cdot R=\frac{25}{0.5}=50
\end{aligned}
$$

Effiver p is $742 \mathrm{~N}=2000 \mathrm{~N}$

$$
\begin{aligned}
& N \cdot A=\frac{w}{P}=\frac{2000}{74}=27 \\
& x=\frac{N \cdot h}{V \cdot R}=\frac{27}{50}=74 \%
\end{aligned}
$$

effert req. to raiso a lead of 5kN or 5000 N

$$
\begin{aligned}
& p=m w+c \\
& 40=m \times 1000+\not \subset \\
& 74=m \times 2000+6 \\
& \Rightarrow 34=1000 m \\
& \Rightarrow m=0.034
\end{aligned}
$$

value of c.

$$
\begin{aligned}
& 40=m \times 1000+C \\
& \Rightarrow 40=0.034 \times 1000+C \\
& \Rightarrow c=6 \\
& p=0.034 w+6 \\
& \Rightarrow p=0.034 \times 5000+6=176 \mathrm{~N}
\end{aligned}
$$

5.2 Simple Lifting Machine

Simple whee Axle

The above is the fig of simple where \& Axle.
\rightarrow the wheel A \& arlo B are keyed to the same shaft. the shaft is mounted on boll bearing, to reduce the fractional resistance minimum.
\rightarrow A string is neveend record the axle. B, which carcass the load to be lifted. A second string is neound round the wheel A in the opposite discern to that of the siting on B.
$D \rightarrow$ sic of effect wheel $w \rightarrow$ load lifted $d \rightarrow$ " "lead apple $P \rightarrow$ pffort applied
\rightarrow one end of the string is fixed to the wheel, while the dither is free $\&$ the effect is applied to this end.
\rightarrow Since, the toe strings are wound in opposite lincections, therefore a dowenurard motion of the effort (p) will raise the load (w)

$$
M \cdot A=\frac{w}{P}
$$

Distarce/Displacement by the whee $=\Pi D$

$$
\begin{aligned}
& \text { " } R=\frac{\pi D}{\pi d} \Rightarrow V \cdot R=\frac{D}{d} \\
& \eta=\frac{M \cdot A}{V \cdot R}
\end{aligned}
$$

\rightarrow If consit of o square threaded serew. S (knewer as verem) \& a teothed whed (vncuen as voorm wheel) geaned to each other..
$\rightarrow A$ wheel A is attached to the weorm, aver uchich parses arope as shoven in fiy.
$D \rightarrow$ Qine of effert wheel
is \rightarrow radius of the load dreum.
$\omega \rightarrow$ lead
$P \rightarrow$ Effort applied
$t \rightarrow N_{0}$. of tectio on the worm whed.

$$
N \cdot A=\frac{w}{P}
$$

Ditance moved by wheel $=\pi D$

$$
\begin{aligned}
& " \quad \text { Dentance m Load drum }=\frac{2 \pi r}{T} \\
& V \cdot R=\frac{\pi D}{2 \pi r / T}=\frac{D T}{2 r}=
\end{aligned}
$$

if. the thare is thered of $n n 0$.

$$
\eta=\frac{M \cdot A}{V \cdot R}
$$ then $V \cdot R=\frac{D T}{n \times 2 \times r}$

Simple. Screw Sale.
of consist of a screw. fitted in a nut, which forms the body of the Tale. The principle, on which screes worse is similar to that of an inclied plane.
\rightarrow The fig shave a simple serest Jade.
$\Rightarrow L \rightarrow$ long the of effect $a r m$
$P \rightarrow$ effort
$\omega \rightarrow$ load
$p \rightarrow$ pitch of the scrum

The distance moved by the effect is one revolution $=2 \pi l$

Distance moved by the lead $=p$

$$
\begin{aligned}
& V \cdot R=\frac{2 \pi l}{P} \quad \eta=\frac{M \cdot A}{V \cdot R} \\
& M \cdot A=\frac{W}{P} \quad \eta
\end{aligned}
$$

Single purchase Crabulinch

In a single purchase crab winch, a rope is find to the drum e is verund a few turns around if.

The free end of the rope carries a lead w.
LA frothed voted A is rigidly mounted on the lead drum
L. Another toothed wheal B called pinion is geared with wheel A.
$T_{1} \rightarrow$ No. of teeth in whell/gean A.
$T_{2} \rightarrow " * \quad * \quad$. \quad.
$l \rightarrow$ length of handle
$\mathrm{H} \rightarrow$ readies of load drew m
$W \rightarrow$ Lend
$P \rightarrow$ effort.
Distance moved by the effect in one reenolutien of hade

$$
=2 \pi L
$$

No. of revolt made by finsen $B=1$

$$
\begin{array}{ll}
\pi \quad \wedge \quad & \quad, \quad A=\frac{T_{2}}{T_{1}} \\
, \quad, \quad \text { load dram }=T_{2} / T_{1}
\end{array}
$$

Distance moved by load $=2 \pi \pi x^{T} 2 / \mathrm{T}_{1}$

$$
\begin{aligned}
& V \cdot R=\frac{2 \pi l}{2 \pi r \times T_{2} / K_{1}}=\frac{T_{1} \times l}{T_{2} \times \pi} \\
& M A=\frac{W}{P} \quad M=\frac{U \cdot A}{V \cdot R}
\end{aligned}
$$

Double purchase crab winch

If is the improved version of single purchase crab sis nlinch. Fore there are 2 spun wheel \& 2 pinion.
T_{1} meshed with T_{2} (pinion)
T_{3}, T_{4} (pinion)
$L=$ lengths of the haole.
$T_{1} \& T_{3}=N_{0}$ of teeth in spun wheels

$$
\begin{aligned}
& T_{2}: T_{4}=" \quad " \quad \text { pinion } v \\
& H=\text { radius of drum } \\
& w=\text { load } \\
& P=\text { peffent }
\end{aligned}
$$

Distance moved by effect in one rennolution of handle

$$
=2 \pi l
$$

$$
\begin{aligned}
& \text { No. of revolt made by pinion } q=1 \text {.. } \\
& \text { 1. , ", spur } 3=T_{4} / T_{3} \\
& \text { - pinion } 2=T_{4} / T_{3} \\
& \text { " " " } \quad \text { query } 1=\frac{T_{2}}{T_{1}} \times \frac{T_{4}}{T_{3}}
\end{aligned}
$$

Distance moved by lead $=2 \pi a \times \frac{T_{2}}{T_{1}} \times \frac{T_{4}}{\tau_{3}}$

$$
\begin{aligned}
& V \cdot R=\frac{2 \pi l}{2 \pi\left(T_{2} / T_{1}\right)\left(T_{3} / T_{4}\right)}=\frac{1}{\pi}\left(\pi / T_{2} \times T_{4} / T_{3}\right) \\
& Y \cdot R=W / P \\
& \eta=\frac{M \cdot A}{V \cdot R}
\end{aligned}
$$

6.2

Dynamics :- it is the study of motion of rigid booly and theire reclation with the ferces causing them.

The entirce sysfem of dynamies is based on 3 laws of motion. Allo knacon as moustan lan's of mation.
$*$ lentan's $1^{\text {st }} \mathrm{law}$
It shates that "Everys bedy' condinees in its sfate of rest on of uniform motion in a straight line, usess if is acfed up on by some apternal facee. of is also callest as lane of inertion.
$\rightarrow 4$ bedy at rest has a tendency to remain of rot called inerction of rest.
\rightarrow Abody in uniform motion in a streaightlins has a tendenyy to preserve its motion. knswenas inertia of motion.
Neveten's $2^{\text {nd }}$ Law

* The reate of change of mementum is directly propentional to the impressed farce and takes place, in the same diren in which the forceedes".
$m=$ mas of a bedy
$U=$ gritial velo. of the booly
$v=$ Pinal velo of the bedy
$a=$ cons. acel
b b time. in seconds rug. to change the vell uto v.
$F=$ Forcee reeq to change vele feom utov on tiec.

Initial mamentans mu
final $y=m \mathrm{~V}$

$$
\text { Rate of change of momentum }=\frac{m v-m u}{t}=\frac{m(v-v)}{t}
$$

Ace to $2^{\text {nd }}$ lane I on ma

$$
=m a
$$

$$
\Rightarrow F=K_{\mathrm{ma}}
$$

$$
\left(\because \frac{v-v}{t}=a\right)
$$

$u \rightarrow$ cons.
For convenience, the wit of fores adopted in she that it produces unit ace n in unit mass.

$$
F=m a=\text { mass } x a^{2} l^{n}
$$

In s.I ryefem unit of fore is Newton $\rightarrow \mathrm{N}$. A Newton may be defined as the force while acting upon a mass of 1 kg , produces an ace of $1 \mathrm{~m} / \mathrm{s}^{2}$ in the dizen of which it acts.
-Alsoknouen as Law of dynamics.
of ael^{n} is dee to greanity $a=9.8 \mathrm{~m} / \mathrm{s}^{2}=1 \mathrm{~kg} \cdot \mathrm{wt}$
a) body has 50 kg mass on earth. Rind a where $g=9 \cdot 8 \mathrm{~N} / \mathrm{m}$

$$
\text { b) on moon } g=1 . \mathrm{tm} / \mathrm{s}^{2}
$$

c) sen. $g=270 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& F_{1}=50 \times 9-8 \\
& F_{2}=50 \times 1.7 \\
& F_{3}=50 \times 270
\end{aligned}
$$

$$
\begin{aligned}
& F=m a \\
& \Rightarrow F=9.8 \operatorname{moghot} \mathrm{~N} \\
& (1 \mathrm{~kg} \cdot \omega \mathrm{t}=9.8 \mathrm{~N}) \\
& L I \cdot H \cdot F=9-8 \mathrm{~N}) \\
& =1 \mathrm{~kg} \cdot \mathrm{wt} \\
& =1 \mathrm{~kg} \cdot \mathrm{~F}
\end{aligned}
$$

*) Venetic equation g

1) $v=u t a t$
2) $S=u t+1 / 2 a t^{2}$
3) $v^{2}=v^{2}+2 a s$
4) A particle on mans nogm stands from rest $\rightarrow 2$ mong under the influences on or canst face. It requires a speed of $8 \mathrm{~m} / \mathrm{s}$ after 12 s .
c) Find forcer on the particle
ii) Find speed at $\ell=1$
iii) Find distance covered by the particle in sit 10 s.
(v) Find internal क to 15 s.
2.0 0

$$
\begin{aligned}
& m=m \text { ans on the particle } 250 g=0.05 \mathrm{~kg} \\
& u=0 \\
& v=6 \mathrm{~m} / \mathrm{s} \\
& t=12 .
\end{aligned} \begin{aligned}
\mathrm{t} & \Rightarrow v=u+a t \\
F=m a & \Rightarrow 6=0+a \times 12 \\
& \Rightarrow a=6 / 12=0.5 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

i)

$$
\begin{aligned}
F & =m \times 9 \\
& =.05 \times 0.5=0.025 \mathrm{~N}
\end{aligned}
$$

ii) $v=u+a t$

$$
=0+(0.5 \times 16)=68 \mathrm{~m} / \mathrm{s}
$$

iii) $s=0 d+1 / 2$ at 2

$$
=0+\frac{1}{2} \times 0.5 \times 10^{2}=25 \mathrm{~m}
$$

iv) $\begin{aligned} s_{2}-s_{1} & =\left(u t_{2}+\frac{1}{2} a u_{2}^{2}\right)-\left(v+1+\frac{1}{2} a t_{1}^{2}\right) \\ & =(, v\end{aligned}$

Newton 3 rd law of Motion
To every action there is an equal s opposite Sen n.

Momentum : - it is the product of mass with velocity. $m \times v$
Pere :- Any external agent which produce are tends to produce, destroys ore tends to destroy the motion of any body: ensurer as Pore. unit n.

$$
F=m \times a
$$

Inertia!- The ipreperty which offers resist dance to change state of rest oremotion is benowen as inertia.

Nowtan ard law for recoil of gun
Whin bullet is fired from ague. the apposite reaction of the bullet is unowen as recoil of que.

Ni \rightarrow Mass of gun.

$$
m \rightarrow \text { Mass of bullet. }
$$

$V \rightarrow$ vel. of gun
$u \rightarrow$ nebs of bullet often being fined.
momentum bocroce of the gun $=M V$
/

$$
\| \quad, \text { bullet }=\mathrm{mv}
$$

$$
M V=m v
$$

Lave of consercnation of Momentum.

Q alembert's principle
A system of forces acting on a body in motion is in dynamic equil(I) with inertia force of the body.

Inertia \rightarrow Resist motion
\rightarrow corset + be at root
The resistant of S_{1}, f_{2}, f_{3} let R.

Let a mass m.
ofulemeant to bring the body at rest, nee have to apply a force in opposite dices whose value is equal to ma.

encuen as inurtior force, to bring the body in static sequel.

$$
\begin{aligned}
& \{F=0 \\
& F \dot{Q}-m a=0 \quad \\
& \Rightarrow F \dot{R}=m a \quad \Rightarrow \quad F_{i}=m a
\end{aligned}
$$

$-m a \rightarrow$ inertia force. $z R_{i}, A l s o$ known as reversed farce.
6.2 Worth, Prover, Energy

Work
When force acts on a body, the body undergoes a displacement, work is said to ko lone on the body by the force.

$$
W=F \cdot S
$$

unit

$$
\begin{aligned}
W & =T \cdot S \\
& =N-m=1 \text { Joule }(S I) \\
1 \text { ereg } & =\text { COS } \geq 1 \text { dyne }=10^{-f} \text { Janle }
\end{aligned}
$$

power
It is the rate of deng warts.

$$
\text { unit }=\text { watt }=\mathrm{J} / \mathrm{s}=\mathrm{N}-\mathrm{m} / \mathrm{s}
$$

Energy
If: is the caperieity to do worth.
2) exists in many forms, Mechanical, electrical Chemical, heat, light etc.
unit

Kinetic Energy
Energy posed by a body, by virtue ofots mass \& velocity,
PE.
Energy parsed by as body, by wictue of its position.
Q) A truce of mans 15 tonnes ficavelling at $1.6 \mathrm{~m} / \mathrm{s} .9 \mathrm{mpl}$ with or spreeing
Law of comercration of Energy It states that "Energy an neither be created nav destroyed, though it can transformed from ane form to another form,

Transformation of Energy
Covidere a body of mass m which is released from rest from height ho above the ground.
$m=$ mass of the body

$$
L=\text { height } 0
$$

Energy at A
sinereat A body has 0 velocity

$$
\begin{aligned}
& p e=0 \\
& p e=m g h
\end{aligned}
$$

$$
\text { total energy }=p \varepsilon+k c z \mathrm{mgh}
$$

Energy af B
The body travelled y distanive from A to B. So

$$
\begin{aligned}
& \text { ur at } B=\frac{m v 3}{2}=\frac{m \times(\sqrt{2 g y})^{2}}{2}=m g y \\
& p-\varepsilon=m g(h-y)=m g h-m g y \\
& \text { total energy }=k e+p=m g h+m g h-m g y \\
& =m g h
\end{aligned}
$$

Energy at C
At c body has fallen a height h.

$$
\begin{aligned}
& v=\sqrt{2 g h} \\
& k e=\frac{m v^{2}}{2}=\frac{m(\sqrt{2 g h})^{2}}{2}=m g h
\end{aligned}
$$

$$
p s=0
$$

total energy $=k e+p e=\mathrm{mgh}$

 When if is af er hilight if lofreme tyo ground.
$4 D C^{\prime \prime}$

$$
\begin{aligned}
& m=100 \mathrm{gm}=0.1 \mathrm{~kg} \\
& h=20 \mathrm{~m} \\
& r \varepsilon_{r_{1}} m g \omega_{1}= \\
& N c_{1}=0
\end{aligned}
$$

Impulse \rightarrow when a const foror F aets on a bods/fer. a time interval. t. Knowen as smpulse.

$$
I=F \times t \text { unit } N-s
$$

Sinerocemarantiont) -
Lsow of conservation of linar momentum
Ace to newtonts $2^{\text {nd }}$ law), the metexternal ferce cleling on a bedy is equal to reate of change of linear momitum/moncentam.

This leads to the law of conservation of lineare mementum for abody:

Which statesthat the lixear momentum of a pooy ceirain const. if the exterinal force on a bedy is Zerco.
6. 3 collision of Blarfic Bodies

Whin tue bodies strives with each other with actin. veloily it is enewen as collision.
LI f be dy is in rest and even if another body stoves to it (wall orfloor) also leneven as collision.
\rightarrow Let any ball strikes to the floor, it rises certain hight or rebounded.
\rightarrow This property of bodies by virtue of which, they rebounded after import is called elating.
$L \rightarrow$ But if a body' does not rechound ab all, after 'import called as inelastic collision.

Phenomenon of collision

- The bodies, immediately after cellivion, came momentarily to real.
- The tue bodies tend to compress each other, so long as they are comprised to the maxi ${ }^{m}$ value called as time of compression. (tc)
- The process of regaining of original shaper from the deformed shape of the bodies called restitution. Time taken fore that called as time of restitution ($t r$.

$$
\text { Tine of collision }=\text { Time of compression + Tame of restitution }
$$

Law of consercnation of nomenturn
\& states that a the total momenturn of twe bodies remains comst. aftere theite collision as

$$
m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}+m_{2} v_{2}
$$

$m_{1}=$ mans of $1^{\text {st-body }}$
$m_{2}=" 112^{\text {nd }}$ body
$U_{1}, U_{2}=$ initial nelocy of mass $m_{1} \geq m_{2}$. roppaity

$$
\left.v_{1}\right) v_{2}=\text { final } " \quad " \quad m_{1} \& m_{2}
$$

(entons hain of collicion of clastic bodies
It states" when twe moring bodies collide arith eack othere, their vels. \& spparation beary a const reatio to their vele. of appreach.

$$
\begin{aligned}
& \left(v_{2}-v_{1}\right)=e\left(v_{1}-v_{2}\right) \\
& e=\frac{v_{1}-v_{2}}{v_{2}-v_{1}}
\end{aligned}
$$

$e=$ co.effivient of restifution.

$v_{1}>v_{2} \rightarrow$ collision takes plave. $v_{2}>V_{1} \rightarrow$ separation tareesplace.

Piore Pypes of collision
\rightarrow Direct colliston
\rightarrow Dhdicent "

Rirect cellixom
The line of impnet of the tuo coliding pedies, is in the line Jeining the centens of the 2 bodies, known as peint of contact ou point of collixien

$$
m_{1} v_{1}+m_{2} v_{2}=m_{2} V_{1}+m_{2} v_{2} .
$$

The nalue of e is in $\operatorname{bet}^{n} 0$ to 1

if $e=0$ cillivion is inclasfic

$$
00^{\circ} e=1 " \quad \text { " elaric. }
$$

8) A balle mass a kg mening with a velocing am/see hit another ball of mass 4 kg at reot, after impoost the If ball comes to rest. Cal. velo. of the $2^{n d}$ ball after impost \& cerffi of resivitution.

$$
\begin{gather*}
m_{1}=2 u g \quad v_{1}=2 \mathrm{~m} / \mathrm{s} \\
m_{2}=4 \mathrm{~kg} \quad v_{1}= \\
v_{2}= \\
v_{2}=10 \\
m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}+m_{2} v_{2} \tag{mb}\\
\Rightarrow 2 \times 2=4 \times v_{2} \\
\Rightarrow v_{2}=1 \mathrm{~m} / \mathrm{s} \\
\left(v_{2}-v_{1}\right)=c\left(u_{1}-v_{2}\right) \\
\Rightarrow e=\frac{1-0}{2-0}=\frac{1}{2}=0.5
\end{gather*}
$$

$\begin{array}{rl} & \Rightarrow e \\ 2015 & e \\ 2018\end{array}$

$$
N_{1}=0 \text { ccemestomi }
$$

$$
\begin{aligned}
& N_{1}=0 \\
& v_{2}=0 \text { at nest } \mathrm{m} \\
& (\mathrm{~m})
\end{aligned}
$$

The balls of mannes 2 vig e 3ky are moving with velo $2 \mathrm{~m} / \mathrm{s} \& 3 \mathrm{a} / \mathrm{s}$ b-wards each othen af $e=0.5$. fined preloily of the treo palle often collision.
(4)

$$
\begin{array}{ll}
m_{1}=2 & v_{1}=2 \\
m_{2}=3 & v_{2}=3
\end{array}
$$

$$
\begin{align*}
& \quad e=\frac{v_{2}-v_{1}}{u_{1}-v_{2}} \\
& \Rightarrow \frac{1}{2}=\frac{v_{2}-v_{1}}{v_{4}(3)}-\frac{v_{2}-v_{1}}{2-(-3)} \\
& \Rightarrow-v_{2}-v_{1}=-+\frac{1}{2}=\frac{1}{2} . \\
& \Rightarrow \frac{1}{2}=\frac{-v_{2}-v_{1}}{5} \\
& \Rightarrow 2 v_{2}-v_{1}=5 / 2 .
\end{align*}
$$

muttiply 2
Q) A ball is dropped framer height of Lan on a Smeoth floon and it reebound bo a hioght of 5m. Qetermene the coeficient of resfitution hetween the sall t the floser \& also determene the eppected height of the $2^{\text {nd }}$ repound.
$U \rightarrow$ vele before imponet

$$
V \rightarrow y \quad \text { ofter }
$$

$h \rightarrow$ hight bofore " 10 m
$h_{1} \rightarrow$ "fter $2^{\text {t }}$ trobeund $5 m$
$h_{2} \rightarrow\|\quad\| 2^{\text {nd }}$, ?

