GOVERNMENT POLYTECHNIC JAJPUR

A/ P: Ragadi, Block: Korel, Dist.: Jajpur, Odisha- 755019

Website: https://www.gpjajpur.org E-mail: principalgpjajpur@yahoo.co.in Contact: 9437155107

DEPARTMENT OF CIVIL ENGINEERING (2022-2023) LESSON PLAN

Discipline: ENGINEERING MECHANICS	Semester: 2nd	Name of the Teaching faculty: SOUBHAGYA GHADAI
r. h	No of Days	Semester from Date:25/10/2022 To Date: 31/01/2023
ubject: MECHANICS	/Week class alloted: 4	No of weeks: 15
	1st	i) FUNDAMENTALS OF ENGINEERING MECHANICS. (Chapter-1)
		ii) Fundamentals
		iii) Definitions of Mechanics, Statics, Dynamics, Rigid Bodies.
		i) Force System.
		Definition, Classification of force system according to plane & line of action.
	2nd	iii) Characteristics of Force & effect of Force.
		iv) Principles of Transmissibility & Principles of Superposition.
1ST		v) Action & Reaction Forces & concept of Free Body Diagram.
		i) Resolution of a Force.
	3rd	ii) Definition, Method of Resolution, Types of Component forces, Perpendicular
		components & non-perpendicular components.
		i) Composition of Forces.
		ii) Definition, Resultant Force, Method of composition of forces, such as:
	4th	A) Analytical Method such as Law of Parallelogram of forces & method of resolution.
		iii) Numerical solving related to Parallelogram Law of Force.
2ND	1st	B) Graphical Method - Introduction, Space diagram, Vector diagram, Polygon law of forces.
	2nd 3rd	Resultant of concurrent, non-concurrent & parallel force system by Analytical & Graphical Method.
		Numerical solving using method of resolution of forces to find a resultant force.(Analytical Method)
		i) Numerical solving class using method of resolution of forces to find a resultant
		force.(Analytical Method)
	4th	 i) Numerical solving class using method of resolution of forces to find a resultant force.(Graphical Method)
3RD	1st	i) Moment of Force.
		 Definition, Geometrical meaning of moment of a force, measurement of moment of a force & its S.I units.
		iii) Classification of moments according to direction of rotation, sign convention.
	2nd	i) Law of moments, Varignon's Theorem of moments.
		ii) Applications of moments.
		iii) Analytical method for finding position of the resultant force by moments.
	3rd	i) Numerical solving class based on law of moments to find the force.
	310	ii) Numerical solving class based on Varignon's Principle of moments to find magnitude
	4th	and position of the resultant force.

		iii) Couple – Definition, moment of a couple classification, S.I. units, measurement of couple, properties of couple.
4TH	1st	i) Numerical solving class based on couple to find magnitude of the couple.
	2nd	CLASS TEST-I
	3rd	i) EQUILIBRIUM OF FORCES. (Chapter-2)
		ii) Definition, condition of equilibrium, Analytical & Graphical conditions of equilibrium for concurrent, non-concurrent & Free Body Diagram.
	4th	i) Lamia's Theorem – Statement and its proof.
5TH	1st	 i) Numerical solving class by the application of Lami's Theorem for solving various engineering problems. (String problems)
	2nd	 i) Numerical solving class by the application of Lami's Theorem for solving various engineering problems. (String problems)
	3rd	i) Numerical solving class by the application of Lami's Theorem for solving various
	4th	engineering problems. (String problems) i) Numerical solving class by the application of Lam's Theorem for solving various engineering problems. (Ball problems)
	1st	 i) Numerical solving class by the application of Lami's Theorem for solving various engineering problems. (Ball problems)
	2nd	 i) Numerical solving class by the application of Lami's Theorem for solving various angineering problems. (Ball problems)
6TH	3rd	i) FRICTION. (Chapter-3)
	J Sru	ii) Definition of friction, Frictional forces, Limiting frictional force, Coefficient of Friction.
	4th	ill) Angle of Friction & Repose, Laws of Friction, Advantages & Disadvantages of Friction.
	1st	 i) Equilibrium of a body on a rough horizontal plane, (both upward & downward conditions)
		ii) Numerical solving on friction of a body on rough horizontal plane.
	2nd	 i) Equilibrium of a body on a rough inclined plane subjected to a force acting along the inclined plane. (both upward & downward conditions)
		 Numerical solving on friction of a body on rough inclined plane subjected to a force acting along the inclined plane.
7TH	3rd	i) Equilibrium of a body on a rough inclined plane subjected to a force acting horizontally. (both upward & downward conditions)
		 ii) Numerical solving on friction of a body on rough inclined plane subjected to a force acting horizontally.
	4th	 Equilibrium of a body on a rough inclined plane subjected to a force acting at some angle with the inclined plane. (both upward & downward conditions)
		 ii) Numerical solving on friction of a body on rough inclined plane subjected to a force acting at some angle with the inclined plane.
	1st	i) Applications of friction.(Ladder Friction)
		ii) Numerical solving based on ladder friction.
8ТН	2nd	I) Applications of friction.(Wedge Friction)
VIII		ii) Numerical solving based on wedge friction.
	3rd	ii) Numerical solving based on wedge friction.

	4th	Previous year questions solving class on Friction.
9 TH		i) CENTROID & MOMENT OF INERTIA. (Chapter-4)
	1st	 ii) Centroid – Definition, Moment of an area about an axis, centroid of geometrical figure such as squares, rectangles, triangles, circles, semicircles & quarter, circles, centroid of composite figures.
		i) Centre of gravity-Definition, Methods for finding centre of gravity.
	2nd	ii) Centre of gravity of plane area figures. (Rectangle, triangle, trapezium,circle, semicircle, quarter circle, circular sector.)
		iii) Centre of gravity of solid figures. (Cube, cylinder, right circular cone, sphere, hemisphere, segment of sphere.)
	3rd	i) Centre of gravity of Plane Figures. (such as T-section, I-section, L-section etc.)
		ii) Centre of gravity of symmetrical sections. (such as T-section, C-section, I-section)
		iii) Numerical solving on centre of gravity of above symmetrical sections.
	4th	i) Centre of gravity of unsymmetrical sections. (such as L-section, composite section)
		ii) Numerical solving on centre of gravity of above unsymmetrical sections.
	1st	 i) Centre of gravity of solid bodies. (Volume of cylinder, hemisphere, right circular solid cone.)
	037-20	ii) Numerical solving on centre of gravity of composite solid bodies.
	2nd	i) Centre of gravity of sections with cut out holes.
	2110	ii) Numerical solving on centre of gravity of hollow sections.
		i) Moment of Inertia – Definition, units of M.I., Methods for finding M.I
10TH	3rd	ii) Moment of Inertia of rectangular section, hollow rectangular section.
		iii) Numerical solving on moment of inertia of above sections.
	4th	i) Perpendicular axis Theorems.
		ii) Moment of Inertia of circular section, hollow circular section.
		iii) Numerical solving on moment of inertia of above sections.
	1st	i) Parallel axis Theorems.
		 Moment of Inertia of triangular section, hollow triangular section, semi circular section hollow semi circular section.
11TH		iii) Numerical solving on moment of inertia of above sections.
	2nd	i) M.I. of plane lamina & different engineering sections. (T-section, I-section, L-section)
		ii) Numerical solving on moment of inertia of T-section, I-section.
	3rd	i) Numerical solving on moment of inertia of L-section.
	4th	i) Revision and doubt clearing class on C.G. and M.I
12TH	1st	Previous year questions solving class on Friction.
	2nd	CLASS TEST-II
	3rd	i) SIMPLE MACHINES. (Chapter-5)
		ii) Definition of simple machine and its types.
		iii) Derive velocity ratio of simple and compound gear train.
		i) Explain simple & compound lifting machine.
	1	ii) Define M.A, V.R. & Efficiency of a machine & State the relation between them.

	1	
		iil) Numerical solving to find M.A., V:R., Efficiency of a machine.
		i) Reversibility of Machine, Self Locking Machine.
	1st	ii) Numerical solving to check the reversibility of machine.
		iii) State and show the graph of friction in a machine.
		iv) Numerical solving related to friction in a machine.
		i) State Law of Machine and show the graph
13TH	2nd	 ii) Numerical solving to find law of machine, effort required to run the machine at no load and load condition.
		i) Maximum M.A. and maximun efficiency of a lifting machine.
	3rd	ii) Numerical solving related to maximum M.A. and maximum efficiency.
	4th	iii) Study of simple machines - A) Simple axle & wheel.
		 i) Study of simple machines – B) Single purchase crab winch & C) Double purchase crab winch.
	1st	ii) Study of simple machines - D) Worm & Worm Wheet.
		i) Study of simple machines – E) Screw Jack.
		ii) Numerical solving to find efficiency of above simple machines.
		iii) Numerical solving to find efficiency of above simple machines.
14TH	2nd	Previous year questions solving class on simple machine.
	3rd	i) DYNAMICS. (Chapter-6)
	314	ii) Kinematics & Kinetics, Principles of Dynamics, Newton's Laws of Motion.
	4th	i) Motion of Particle acted upon by a constant force.
	1st	i) Work, Power, Energy & its Engineering Applications.
		i) Momentum & impulse.
15TH	2nd	 ii) Conservation of energy & linear momentum, collision of elastic bodies and Coefficien of Restitution.
		iii) Numerical solving related to Coefficient of Restitution.
	3rd	i) Numerical solving related to Coefficient of Restitution.
	4th	Previous year questions solving class on dynamics.

Books Recommended

- 1. Engineering Mechanics - by A.R. Basu (TMH Publication Delhi)
- Engineering Machines Basudev Bhattacharya (Oxford University Press). 2.
- Text Book of Engineering Mechanics R.S Khurmi (S. Chand). 3.
- Applied Mechanics & Strength of Material By I.B. Prasad. 4.
- 5.
- Engineering Mechanics By Timosheenko, Young & Rao. Engineering Mechanics Beer & Johnson (TMH Publication) 6.

Signature of faculty 22