LESSON PLAN | Discipline: Civil | Semester: 4th | Semester from: 16.01.24 to 26.04.24
No. of weeks:17 | | |---|---|--|--| | Subject: Structural
Design – I
Th.1 | No. of days/per week
Class Allotted: 5 | Name of the teaching faculty:
Sushree Souravi Rout | | | land a | orazoni rosso accomingi- | Anning the state of o | | | Week | Class/Day | Theory Topics | | | 1 st | 1 st 1111 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10 | CH 1:Working stress method (WSM) | | | | 2 nd | 1.1 Objectives of design and detailing. State the different methods of design of concrete structures. | | | | 3 rd | -DO- | | | | 4 th | -DO+ | | | | S th | 1.2 Introduction to reinforced concrete, R.C. sections their behavior, | | | 2 nd | 1 st | grades of concrete and steel. | | | | 2 nd | Permissible stresses, assumption in W.S.M. | | | | 3 rd | 1.3 Flexural design and analysis of single reinforced sections from first principles. | | | | 4 th | 1.4 Concept of under reinforced, over reinforced and balanced sections. | | | | 5 th | -DO- | | | 3 rd | 1 st | 1.5 Advantages and disadvantages of WSM, reasons for its obsolescence: | | | | 2 nd | -DO- | | | | 3 rd 3814,78551 | CH:2 Philosophy Of Limit State Method (LSM) | | | | 4 th | Definition, Advantages of LSM over WSM, IS code
suggestions regarding design philosophy | | | | 5th | -DO- THE PARTY AND A | | | Ath Bros at | 1 state of the state of the | 2.2 Types of limit states, partial safety factors for materials strength, characteristic strength, | | | | 2 nd | characteristic load, design load, loading on structure as per I.S. 875 | | | | 3 rd | 2.3 Study of I.S specification regarding spacing of
reinforcement in slab, cover to reinforcement in slab,
beam column & footing, | | | | 4ex Carrier (Are Design Foreign | minimum reinforcement in slab, beam & column, | | | | 5 th | lapping, anchorage, effective span for beam & slab. | | | 5 th | 1 st | CH 3: Analysis and Design of Single and Double
Reinforced Sections (LSM) | | | | 2 nd | -00- | | | limiting section, neutral axis co-entitlein, intring uniting percentage of steel required for limiting singly R.C. section. 2nd -DO- 3rd -DO- 4th -DO- 5th -DO- 3rd -DO- 2nd -DO- 3rd 4th -DO- 3rd -DO- 4th -DO- 3rd -DO- 4th -DO- 3rd -DO- 4th -DO- 4th -DO- 5th -DO- 5th -DO- 5th -DO- 4th | | 3 rd | 3.1 Limit state of collapse (flexure), Assumptions, Stress-Strain relationship for concrete and steel, neutral axis, stress block diagram and strain diagram for singly reinforced section. | |---|------|--------------------|--| | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Ath | -DO- | | 3.2 Concept of under- reinforced, over-reinforced and limiting section, neutral axis co-efficient, limiting value of moment of resistance and limiting percentage of steel required for limiting singly R.C. section. 2nd -DO- 3rd -DO- 4th -DO- 5th -DO- 3rd -DO- 2nd -DO- 3rd 4th -DO- 3rd -DO- 3rd -DO- 4th -DO- 3rd -DO- 3rd -DO- 4th -DO- 5th -DO- 4th -DO- 5th -DO- 4th -DO- 5th -DO- 4th -DO- 5th -DO- 5th -DO- 5th -DO- 5th -DO- 5th -DO- 5th -DO- 4th -DO- 5th -DO- 4th -DO- 5th -DO- 5th -DO- 4th -DO- 5th -DO- 4th -DO- 5th -DO- 4th -DO- 5th -DO- 4th -DO- 4th -DO- 4th -DO- 4th -DO- 3rd -DO- 4th -DO- 4th -DO- 3rd -DO- 4th -DO- 3rd | | | 1 (3) | | limiting section, neutral axis co-efficient, limiting value of moment of resistance and limiting percentage of steel required for limiting singly R.C. section. 2 nd -DO- 3 rd -DO- 4 th -DO- 5 th 3.3 Analysis and design: determination of design constants, moment of resistance and area of steel for rectangular sections -DO- 2 nd -DO- 3 rd -DO- 4 th 3.4 Necessity of doubly reinforced section, design of doubly reinforced rectangular section 5 th -DO- 4 th -DO- 5 th -DO- 2 nd -4.1 Nominal shear stress in R.C. section, design shear strength of concrete, maximum shear stress, design of shear reinforcement, minimum shear stress, design of shear reinforcement, minimum shear stress, design of shear reinforcement. 3 nd -DO- 4 th -DO- 5 th -DO- 4.2 Bond and types of bond, bond stress, check for bond stress, development length in tension and compression, anchorage value for hooks 90 bend and 45 bend standards lapping of bars, check for development lengthDO- 3 nd -DO- 3 nd -DO- 3 nd -DO- 3 nd -DO- 4 th -DO- 3 nd -DO- 5 th -DO- 4 th -DO- 5 th -DO- 5 th -DO- 5 th -DO- 4 th -DO- 5 | | | 3.2 Concept of under- reinforced, over-reinforced and | | 3rd -DO- 4th -DO- 5th -DO- 5th -DO- 5th -DO- 3.3 Analysis and design: determination of design constants, moment of resistance and area of steel for rectangular sections -DO- 3rd -DO- 3rd -DO- 4th -DO- 4th -DO- 5th -DO- 5th -DO- 4th -DO- 4th -DO- 5th -DO- 4th -DO- 5th -DO- 5th -DO- 4th 3rd -DO- 3rd -DO- 3rd -DO- 5th | gth. | | limiting section, neutral axis co-efficient, limiting value of moment of resistance and limiting percentage of | | 3rd -DO- 4th -DO- 5th 3.3 Analysis and design: determination of design constants, moment of resistance and area of steel for rectangular sections -DO- 2rd -DO- 3rd -DO- 3rd -DO- 3rd -DO- 3rd -DO- 4th -DO- 5th | | 2nd | DH (3) 400-1010-1031-1 | | 4th -DO- 5th 3.3 Analysis and design: determination of design constants, moment of resistance and area of steel for rectangular sections 1st -DO- 2nd -DO- 3rd -DO- 3rd -DO- 3rd -DO- 4th 3.4 Necessity of doubly reinforced section, design of doubly reinforced rectangular section 5th -DO- 5th -DO- 4.1 Nominal shear stress in R.C. section, design shear strength of concrete, maximum shear stress, design of shear reinforcement, minimum shear reinforcement, forms of shear reinforcement. 3rd -DO- 4th -DO- 5th -DO- 4th -DO- 5th -DO- 3rd 5th | | | -DO-1110 (1970) | | 3.3 Analysis and design: determination of design constants, moment of resistance and area of steel for rectangular sections -DO- | | | -DO- | | 2nd -DO- 3rd 4rd -DO- 5rd -DO- 4rd -DO- 5rd -DO- 4rd -DO- 3rd 4rd -DO- 3rd 4rd -DO- 3rd -DO- 3rd -DO- 3rd -DO- 3rd -DO- 3rd -DO- 4rd 4rd -DO- 3rd -DO- 4rd -DO- 4rd -DO- 3rd -DO- 4rd 5rd -DO- | | 5 th | constants, moment of resistance and area of steel for | | 2 nd -DO- 3'd -DO- 4'm 3.4 Necessity of doubly reinforced section, design of doubly reinforced rectangular section 5th -DO- 8th 9th -DO- 8th -DO- 9th -DO- 8th -DO- 9th -DO- 9th -DO- 9th -DO- 9th -DO- 9th -DO- 9th -DO- | | 111 | -00-00-00-00-00-00-00-00-00-00-00-00-00 | | 3"d | 100 | | tori, the -DO-mattholman | | 3.4 Necessity of doubly reinforced section, design of doubly reinforced rectangular section 5th | | | -00- | | Sth | | 4 th | 3.4 Necessity of doubly reinforced section, design of | | 1st 2 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2 | | | | | 2nd 4.1 Nominal shear stress in R.C. section, design shear strength of concrete, maximum shear stress, design of shear reinforcement, minimum shear reinforcement, forms of shear reinforcement. 3rd -DO- 4th -DO- 5th 4.2 Bond and types of bond, bond stress, check for bond stress, development length in tension and compression, anchorage value for hooks 90 bend and 45 bend standards lapping of bars, check for development length. 9th -DO- 2nd -DO- 3rd -DO- 4.3 Numerical problems on deciding whether shear reinforcement is required or not, check for adequacy of the section in shear. Design of shear reinforcement Minimum shear reinforcement in beams (Explain through examples only). 5th -DO- 10th -DO- 10th -DO- 10th -DO- 2nd -DO- | | | CH 4: Shear, Bond and Development Length (LSM | | 4th 4.2 Bond and types of bond, bond stress, check for bond stress, development length in tension and compression, anchorage value for hooks 90 bend and 45 bend standards lapping of bars, check for development length. 9th 4th 4.3 Numerical problems on deciding whether shear reinforcement is required or not, check for adequacy of the section in shear. Design of shear reinforcement Minimum shear reinforcement in beams (Explain through examples only). 5th 4.00- 10th 4.5 — DO- | 8" | | 4.1 Nominal shear stress in R.C. section, design shear
strength of concrete, maximum shear stress, design of
shear reinforcement, minimum shear reinforcement, | | 4th -DO- 4.2 Bond and types of bond, bond stress, check for bond stress, development length in tension and compression, anchorage value for hooks 90 bend and 45 bend standards lapping of bars, check for development length. 1st -DO- 2nd -DO- 3rd -DO- 4th 4th 4.3 Numerical problems on deciding whether shear reinforcement is required or not, check for adequacy of the section in shear. Design of shear reinforcement Minimum shear reinforcement in beams (Explain through examples only). 5th -DO- 10th -DO- 2nd -DO- | | 310 JOHN 1977 | To palace -DO- resulted for | | 4.2 Bond and types of bond, bond stress, check for bond stress, development length in tension and compression, anchorage value for hooks 90 bend and 45 bend standards lapping of bars, check for development length. 1st | | | -DO- | | 2 nd -DO- 3 rd -DO- 4 th 4.3 Numerical problems on deciding whether shear reinforcement is required or not, check for adequacy of the section in shear. Design of shear reinforcement Minimum shear reinforcement in beams (Explain through examples only). 5 th -DO- 10 th -DO- 2 nd -DO- | | 5 th | bond stress, development length in tension and compression, anchorage value for hooks 90 bend and 45 bend standards lapping of bars, check for | | 2 nd -DO- 3 rd -DO- 4 th 4.3 Numerical problems on deciding whether shear reinforcement is required or not, check for adequacy of the section in shear. Design of shear reinforcement Minimum shear reinforcement in beams (Explain through examples only). 5 th -DO- 10 th 2 nd -DO- | QIA | 111 | -DO- | | 3 rd 4th 4.3 Numerical problems on deciding whether shear reinforcement is required or not, check for adequacy of the section in shear. Design of shear reinforcement Minimum shear reinforcement in beams (Explain through examples only). 5 th -DO- 10 th 2 nd -DO- | (A) | 2 nd | -DO- | | 4th 4.3 Numerical problems on deciding whether shear reinforcement is required or not, check for adequacy of the section in shear. Design of shear reinforcement Minimum shear reinforcement in beams (Explain through examples only). 5th -DO- 10th 2nd -DO- | | | -00- | | reinforcement is required or not, check for adequacy of the section in shear. Design of shear reinforcement Minimum shear reinforcement in beams (Explain through examples only). 5th -DO- 10th -DO- 2nd -DO- | | | 4.3 Numerical problems on deciding whether shear | | 10 th 1 st -DO-
2 ^{ns} -DO- | | State Constitution | reinforcement is required or not, check for adequacy of the section in shear. Design of shear reinforcement Minimum shear reinforcement in beams (Explain | | 10 th | | 5 th | Light Control of the | | 2 nd -DO- | 100 | 1777 | 10.74470 | | | 10 | | La Contraction de Contracti | | | | | | | | 4 th | CH 5: Analysis and Design of T-Beam (LSM) | |-------------------|---------------------|---| | | 5 th | 5.1 General features, advantages, effective width of | | 2.010 | | flange as per IS: 456-2000 code provisions. | | 11 th | 1 st | -DO- | | | 2 nd | 5.2 Analysis of singly reinforced T-Beam, strain
diagram & stress diagram, depth of neutral axis,
moment of resistance of T-beam section with neutra
axis lying within the flange. | | | 3 rd | -DO- | | | Annual model espins | 5.3 Simple numerical problems on deciding effective flange width. (Problems only on finding moment of resistance of T-beam section when N.A. lies within or up to the bottom of flange shall be asked in written examination). | | | 5 th | -DO- | | 12 th | 1 at | -DO- | | | 2 nd | CH 6: Analysis and Design of Slab and Stair case (LSM | | | 3'# | 6.1 Design of simply supported one-way slabs for flexure check for deflection control and shear. | | | 4 th | -DO- | | | 5 th | -DO- | | | 1" | 6.2 Design of one-way cantilever slabs and cantilevers
chajjas for flexure check for deflection control and
check for development length and shear. | | | 2 nd | -DO- | | | 3 rd | 6.3 Design of two-way simply supported slabs for flexure with corner free to lift. | | | 4 th | -DO- | | | 5 th | -DO- | | 14 th | 1ª | 6.4 Design of dog-legged staircase | | | 2 nd | -DO- | | | 3'0 | -DO- | | | 4 th | 6.5 Detailing of reinforcement in stairs spanning longitudinally. | | | 5 th | CH 7: Design of Axially loaded columns and Footings (LSM) | | 1.5 th | 1 st | 7.1 Assumptions in limit state of collapse-
compression. | | | 2 nd | 7.2 Definition and classification of columns, effective length of column. Specification for minimum reinforcement; cover, maximum reinforcement, number of bars in rectangular, square and circular sections, diameter and spacing of lateral ties. | | | 3 rd | -DO- | | | . 4 th | -00- | | | 5th literature to other | 7.3 Analysis and design of axially loaded short square, rectangular and circular columns (with lateral ties only). | |------------------|-------------------------|--| | 16 th | 1 st | -DO- | | | 2 nd | -DO- | | | 3 rd | -DO- | | | 4 th | 7.4 Types of footing, Design of isolated square column
footing of uniform thickness for flexure and shear. | | | 5 th | -DO- | | 17 th | 1 st | -DO- | | | 2 nd | REVISION | | | 3 rd | REVISION | | | 4 th | REVISION | | | 5 th | REVISION | Signature of faculty