DISCIPLIN E – ELECTRIC AL ENGG	SEMESTE R 5TH	NAME OF THE TEACHING FACULTY- NIHARIKA SETHY, LECT(ETC.)		
SUB- DE&MP	No Of Days Per Week Class Alloted-5	SEMESTER FROM 01.08.2023 TO 30.11.2023 NO OF WEEK – 13 WEEKS		
WEEK	CLASS DAY	THEORY	STATUS	
1 ST WEEK	1ST	Binary,Octal,Hexadecimal number systems and		
	2ND	Compare with Decimal system.		
	3RD	Binary addition, subtraction, Multiplication and Division		
	4TH	1'scomplementand2'scomplementnumbersforabinarynumber		
	5TH	Subtraction of binary numbers in 2's complement method		
2 nd WEEK	1ST	Use of weighted and Un-weighted & codes		
	2ND	Write Binary equivalent number for a, number in 8421 Excess-3 and Gray Code and vice-versa.		
	3RD	Importance of parity Bit		
	4TH	Logic Gates: AND,OR, NOT with truth table		
	5TH	NAND, NOR and EX-OR gates with truth table		
	1ST	Realize AND, OR, NOT operations using NAND, NOR gates.		
3 RD WEEK	2ND	Different postulates and De-Morgan's theorems		
5 WEEK	3RD	Boolean algebra		
	4TH	Use Of Boolean Algebra For Simplification Of Logic Expression		
	5TH	Use Of Boolean Algebra For Simplification Of Logic Expression		
4 TH WEEK	1ST	POS Logic Expression and SOP Logic Expression		
	2ND	Karnaugh Map For 2 variable		
	3RD	Karnaugh Map For 2,3,4 Variable,		
	4TH	Simplification Of SOP And POS		
	5TH	Logic Expression Using K-Map		
	1ST	Give the concept of combinational logic circuits		
5 TH WEEK	2ND	Half adder circuit and verify its functionality using truth table		
	3RD	Realize a Half-adder using NAND gates only and NOR gates only.		
	4TH	Full adder circuit and explain its operation with truth table		
	5TH	IA EXAM		
6 TH WEEK	1ST	Realize full-adder using two Half-adders and an OR-gate and write truth table		
	2ND	Give the idea of Sequential logic circuits.		
	3RD	State the necessity of clock and give the concept of level		
	4TH	clocking and edge triggering		

	5TH	Clocked SR-flip flop with preset and clear inputs	
7 TH WEEK	1ST	Construct level clocked JK flip flop using S-R flip-flop and	
	131	explain with truth table	
	2ND	JK flip flop using S-R flip-flop	
	3RD	Concept of race around condition and study of master slave	
	4TH	JK flip flop	
	5TH	Class Test	
8 TH WEEK	1ST	Give the truth table so edge triggered .	
	2ND	D and T flip flops and draw their symbols	
	3RD	Application so flip flops.	
	4TH	Introduction of counter. Define modulus of a counter	
	5TH	4-bit asynchronous counter and its timing diagram	
	1ST	Asynchronous decade counter,	
	2ND	4-bitsynchronouscounter	
9 TH WEEK	3RD	Distinguish between synchronous and asynchronous counters	
) WEEK	4TH	State the need for a Register and list the four types of registers.	
		Working of SISO, SIPO, PISO, PIPO Register with truth table	
	5TH	using flip flop.	
	1ST	Introduction to Microprocessors, Microcomputers	
		Architecture of Intel 8085 A Microprocessor and description of	
	2ND	each block	
10 TH WEEK	3RD	Architecture of Intel 8085 A Microprocessor and description of each block	
	4TH	Pin diagram and description of 8085	
	5TH	Pin diagram and description of 8085	
	1ST	Pin diagram and description of 8085A	
	2ND	Stack ,Stack pointer & stack top Interrupts	
11 TH WEEK	3RD	Opcode &Operand	
	4TH	Differentiate between one byte, two byte &	
	5TH	Three byte instruction with	
	1ST	Differentiate between one byte ,two byte & three byte instruction with	
12 TH WEEK	2ND	Instruction set of 8085 example	
12 WEEK	3RD	Instruction set of 8085 example	
	4TH	Addressing mode	
	5TH	Timing Diagram	
	1ST	Fetch Cycle, Machine Cycle, Instruction Cycle, T-State	
13 TH WEEK	2ND	Timing Diagram for memory read ,memory write ,I/O read, I/O write.	
	3RD	Timing Diagram for 8085 instruction Counter and time delay	
	4TH	Simple assembly language programming of 8085	
	5TH	Simple assembly language programming of 8085	

14 TH WEEK	1ST	Basic Interfacing Concepts ,Memory mapping & I/O mapping
	2ND	Functional block diagram and description of each block of
	3RD	Programmable peripheral interface Intel 8255,
	4TH	Application using 8255:
	5TH	Seven segment LED display
15 TH WEEK	1ST	Square wave generator
	2ND	Traffic light Controller
	3RD	Doubt clearing class
	4TH	Doubt clearing class
	5TH	Semester question discussion